Self-induced parametric amplification in ring resonating gyroscopes

International Journal of Non-Linear Mechanics - Tập 94 - Trang 300-308 - 2017
Pavel M. Polunin1,2, Steven W. Shaw3,1,2
1Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48823, USA
2Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48823, USA
3Department of Mechanical and Aerospace Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA

Tài liệu tham khảo

Amabili, 2003, Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction, Appl. Mech. Rev., 56, 349, 10.1115/1.1565084 Amabili, 2008 Naghdi, 1973 Moussaoui, 2002, Non-linear vibrations of shell-type structures, J. Sound Vib., 255, 161, 10.1006/jsvi.2001.4146 A.M. Shkel, Type I and Type II micromachined vibratory gyroscopes, in: Position, Location, and Navigation Symposium, San Diego, 2006, pp. 25–27. Acar, 2008 Yazdi, 1998, Micromachined inertial sensors, Proc. IEEE, 86, 1640, 10.1109/5.704269 Cho, 2014, Fused-silica micro birdbath resonator gyroscope (μ-BRG), J. Microelectromech. Syst., 23, 66, 10.1109/JMEMS.2013.2291534 Prikhodko, 2011, Microscale glass-blown three-dimensional spherical shell resonators, J. Microelectromech. Syst., 20, 691, 10.1109/JMEMS.2011.2127453 Remtema, 2001, Active frequency tuning for micro resonators by localized thermal stressing effects, Sens. Actuators A Phys., 91, 326, 10.1016/S0924-4247(01)00603-3 Painter, 2003, Active structural error suppression in MEMS vibratory rate integrating gyroscopes, IEEE Sens. J., 3, 595, 10.1109/JSEN.2003.817165 Ahn, 2015, Mode-matching of wineglass mode disk resonator gyroscope in (100) single crystal silicon, J. Microelectromech. Syst., 24, 343, 10.1109/JMEMS.2014.2330590 Gallacher, 2005, Electrostatic correction of structural imperfections present in a microring gyroscope, J. Microelectromech. Syst., 14, 221, 10.1109/JMEMS.2004.839325 Kim, 2006, A systematic method for tuning the dynamics of electrostatically actuated vibratory gyros, IEEE Trans. Control Syst. Technol., 14, 69, 10.1109/TCST.2005.860525 Antonello, 2009, Automatic mode matching in MEMS vibrating gyroscopes using extremum-seeking control, IEEE Trans. Ind. Electron., 56, 3880, 10.1109/TIE.2009.2020707 Wong, 2006, Thermoelastic damping of the in-plane vibration of thin silicon rings, J. Sound Vib., 293, 266, 10.1016/j.jsv.2005.09.037 Ghaffari, 2015, Accurate modeling of quality factor behavior of complex silicon MEMS resonators, J. Microelectromech. Syst., 24, 276, 10.1109/JMEMS.2014.2374451 Ayazi, 2001, A HARPSS polysilicon vibrating ring gyroscope, J. Microelectromech. Syst., 10, 169, 10.1109/84.925732 J.-H. Lee, B.-Y. Choi, K.-h. Park, H.-J. Yoo, Vibrating disk type micro-gyroscope, US Patent 5,783,749, Jul. 21, 1998. H. Johari, F. Ayazi, Capacitive bulk acoustic wave silicon disk gyroscopes, in: Electron Devices Meeting, 2006. IEDM'06. International, IEEE, 2006, pp. 1–4. http://dx.doi.org/10.1109/IEDM.2006.346827. R.L. Kubena, D.T. Chang, Disc resonator gyroscopes, US Patent 7,581,443, Sep. 1, 2009. S.H. Nitzan, V. Zega, M. Li, C.H. Ahn, A. Corigliano, T.W. Kenny, D.A. Horsley, Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope, Sci. Rep. 5 (2015). http://dx.doi.org/10.1038/srep09036. Rugar, 1991, Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett., 67, 699, 10.1103/PhysRevLett.67.699 Rhoads, 2005, Tunable microelectromechanical filters that exploit parametric resonance, J. Vib. Acoust., 127, 423, 10.1115/1.2013301 Rhoads, 2006, Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators, J. Sound Vib., 296, 797, 10.1016/j.jsv.2006.03.009 Tondl, 2000 Warminski, 2006, Autoparametric vibrations of a nonlinear system with pendulum, Math. Probl. Eng., 10.1155/MPE/2006/80705 Fatimah, 2002, Bifurcations in an autoparametric system in 1, Int. J. Non-Linear Mech., 37, 297, 10.1016/S0020-7462(00)00115-3 Nayfeh, 2008 Westra, 2010, Nonlinear modal interactions in clamped-clamped mechanical resonators, Phys. Rev. Lett., 105, 117205, 10.1103/PhysRevLett.105.117205 Dunn, 2010, Anharmonic modal coupling in a bulk micromechanical resonator, Appl. Phys. Lett., 97, 123109, 10.1063/1.3489423 Matheny, 2013, Nonlinear mode-coupling in nanomechanical systems, Nano Lett., 13, 1622, 10.1021/nl400070e Y. Yang, E. Ng, P. Polunin, Y. Chen, S. Strachan, V. Hong, C.H. Ahn, O. Shoshani, S. Shaw, M. Dykman, T. Kenny, Experimental investigation on mode coupling of bulk mode silicon MEMS resonators, in: Micro Electro Mechanical Systems (MEMS), 2015 Proceedings of the 28th IEEE International Conference on, IEEE, 2015, pp. 1008–1011. http://dx.doi.org/10.1109/MEMSYS.2015.7051132. Evensen, 1966, Nonlinear flexural vibrations of thin circular rings, J. Appl. Mech., 33, 553, 10.1115/1.3625121 Maewal, 1981, Nonlinear harmonic oscillations of gyroscopic structural systems and the case of a rotating ring, J. Appl. Mech., 48, 627, 10.1115/1.3157685 Natsiavas, 1994, Dynamics and stability of non-linear free vibration of thin rotating rings, Int. J. Non-Linear Mech., 29, 31, 10.1016/0020-7462(94)90050-7 Kim, 2002, Free non-linear vibration of a rotating thin ring with the in-plane and out-of-plane motions, J. Sound Vib., 258, 167, 10.1006/jsvi.2002.5104 Ahn, 2014, Encapsulated high frequency (235kHz), high-Q (100k) disk resonator gyroscope with electrostatic parametric pump, Appl. Phys. Lett., 105, 243504, 10.1063/1.4904468 Soedel, 2004 Park, 2008, Frequency equation for the in-plane vibration of a clamped circular plate, J. Sound Vib., 313, 325, 10.1016/j.jsv.2007.11.034 Weaver, 1990 Maganty, 1987, Large amplitude oscillations of thin circular rings, J. Appl. Mech., 54, 315, 10.1115/1.3173014 Zhang, 2005, Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor, Sens. Actuators A: Phys., 122, 23, 10.1016/j.sna.2004.12.033 N.N. Bogolyubov, Y.A. Mitropolskii, Asymptotic methods in the theory of non-linear oscillations, Vol. 10, CRC Press, 1961. Nayfeh, 2007, Dynamic pull-in phenomenon in MEMS resonators, Nonlinear Dyn., 48, 153, 10.1007/s11071-006-9079-z Alsaleem, 2010, An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically, J. Microelectromech. Syst., 19, 794, 10.1109/JMEMS.2010.2047846 Mahmoodi, 2008, An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams, J. Sound Vib., 311, 1409, 10.1016/j.jsv.2007.09.027 Crespo da Silva, 1978, Nonlinear flexural-flexural-torsional dynamics of inextensional beams, J. Struct. Mech. I. Equ. Motion, 6, 437 J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Vol. 42, Springer Science & Business Media, 2013. K.L. Turner, S.A. Miller, P.G. Hartwell, N.C. MacDonald, S.H. Strogatz, S.G. Adams, Five parametric resonances in a microelectromechanical system, Nature 396 (6707), 1998, pp. 149–152. http://dx.doi.org/10.1038/24122. Dou, 2015, Structural optimization for nonlinear dynamic response, Philos. Trans. R. Soc. A, 373, 20140408, 10.1098/rsta.2014.0408 Tripathi, 2013, Computational synthesis for nonlinear dynamics based design of planar resonant structures, J. Vib. Acoust., 135, 051031, 10.1115/1.4024845