Sackung and enigmatic mass movement folds on a structurally-controlled mountain ridge

Geomorphology - Tập 322 - Trang 175-187 - 2018
Michal Břežný1, Tomáš Pánek1, Jan Lenart1, Radomír Grygar2, Petr Tábořík3,4, Sam McColl5
1Department of Physical Geography and Geoecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
2Institute of Geological Engineering, Faculty of Mining and Geology, VSB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
3Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
4Institute of Rock Structure and Mechanics, Czech Academy of Sciences, V Holešovičkách 94/41, 182 09 Prague 8, Czech Republic
5Geosciences Group, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agliardi, 2001, Structural constraints on deep-seated slope deformation kinematics, Eng. Geol., 59, 83, 10.1016/S0013-7952(00)00066-1

Agliardi, 2009, Tectonic vs. gravitational morphostructures in the central Eastern Alps (Italy): Constraints on the recent evolution of the mountain range, Tectonophysics, 474, 250, 10.1016/j.tecto.2009.02.019

Alexandrowicz, 1999, Recurrent Holocene landslides: a case study of the Krynica landslide in the Polish Carpathians, The Holocene, 9, 91, 10.1191/095968399674419966

Angelier, 1989, From orientation to magnitudes in paleostress determinations using fault slip data, J. Struct. Geol., 11, 37, 10.1016/0191-8141(89)90034-5

Baroň, 2007, Výsledky datování hlubokých svahových deformací v oblasti Vsetínska a Frýdeckomístecka, 12, 2006

Baroň, 2006, Holocene folding of the flysch rocks of the Godula Member, Silesian Nappe (Outer Western Carpathians, Czech Republic) by mass wasting processes, Geosci. Res. Rep., 40, 46

Břežný, 2018, 10Be dating reveals pronounced Mid-to Late Holocene activity of deep-seated landslides in the highest part of the Czech Flysch Carpathians, Quat. Sci. Rev., 195, 180, 10.1016/j.quascirev.2018.07.030

Bishop, 1986, Rift and thrust tectonics associated with a translational block slide, Abbotsford, New Zealand, Geol. Mag., 123, 13, 10.1017/S0016756800026509

Bois, 2008, Influence of major inherited faults zones on gravitational slope deformation: a two-dimensional physical modelling of the La Clapière area (Southern French Alps), Earth Planet. Sci. Lett., 272, 709, 10.1016/j.epsl.2008.06.006

Bois, 2012, Influence of structural heterogeneities and of large scale topography on imbricate gravitational rock slope failures: new insights from 3-D physical modeling and geomorphological analysis, Tectonophysics, 526–529, 147, 10.1016/j.tecto.2011.08.001

Booth, 2017, Holocene history of deep-seated landsliding in the North Fork Stillaguamish River valley from surface roughness analysis, radiocarbon dating, and numerical landscape evolution modeling, J. Geophys. Res. Earth Surf., 122, 456, 10.1002/2016JF003934

Brandes, 2014, Fault-related folding: a review of kinematic models and their application, Earth-Science Rev., 138, 352, 10.1016/j.earscirev.2014.06.008

Břežný, 2017, Deep-seated landslides affecting monoclinal flysch morphostructure: evaluation of LiDAR-derived topography of the highest range of the Czech Carpathians, Geomorphology, 285, 44, 10.1016/j.geomorph.2017.02.007

Brideau, 2012, Evaluating kinematic controls on planar translational slope failure mechanisms using three-dimensional distinct element modelling, Geotech. Geol. Eng., 30, 991, 10.1007/s10706-012-9522-5

Bronk Ramsey, 2009, Bayesian analysis of radiocarbon dates, Radiocarbon, 51, 337, 10.1017/S0033822200033865

Chigira, 1992, Long-term gravitational deformation of rocks by mass rock creep, Eng. Geol., 32, 157, 10.1016/0013-7952(92)90043-X

Conrad, 2015, System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991, 10.5194/gmd-8-1991-2015

Czech Geological Survey, 2015. Geological Map of the Czech Republic 1:50 000.

Danišík, 2008, Apatite fission track and (U-Th)/He dating of teschenite intrusions gives time constraints on accretionary processes and development of planation surfaces in the Outer Western Carpathians, Z. Geomorphol., 52, 273, 10.1127/0372-8854/2008/0052-0273

Dooley, 2012, Analogue modelling of intraplate strike-slip tectonics: a review and new experimental results, Tectonophysics, 574–575, 1, 10.1016/j.tecto.2012.05.030

Fleming, 1989, Structures associated with strike-slip faults that bound landslide elements, Eng. Geol., 27, 39, 10.1016/0013-7952(89)90031-8

Hart, 2012, When landslides are misinterpreted as faults: case studies from the western United States, Environ. Eng. Geosci., 18, 313, 10.2113/gseegeosci.18.4.313

Havaej, 2014, Characterization of bi-planar and ploughing failure mechanisms in footwall slopes using numerical modelling, Eng. Geol., 178, 109, 10.1016/j.enggeo.2014.06.003

Hippolyte, 2006, The recent fault scarps of the Western Alps (France): tectonic surface ruptures or gravitational sackung scarps? A combined mapping, geomorphic, levelling, and 10Be dating approach, Tectonophysics, 418, 255, 10.1016/j.tecto.2006.02.009

Hippolyte, 2009, Cosmogenic 10Be dating of a sackung and its faulted rock glaciers, in the Alps of Savoy (France), Geomorphology, 108, 312, 10.1016/j.geomorph.2009.02.024

Hippolyte, 2012, 10Be ages reveal >12 ka of gravitational movement in a major sackung of the Western Alps (France), Geomorphology, 171–172, 139, 10.1016/j.geomorph.2012.05.013

Humair, 2013, Structural characterization of Turtle mountain anticline (Alberta, Canada) and impact on rock slope failure, Tectonophysics, 605, 133, 10.1016/j.tecto.2013.04.029

Jaboyedoff, 2011, Slope tectonics: a short introduction, 351, 1

Jaboyedoff, 2013, An introductory review on gravitational-deformation induced structures, fabrics and modeling, Tectonophysics, 605, 1, 10.1016/j.tecto.2013.06.027

Jamison, 1987, Geometric analysis of fold development in overthrust terranes, J. Struct. Geol., 9, 207, 10.1016/0191-8141(87)90026-5

Jankovská, 2018, Last Glacial to Holocene vegetation succession recorded in polyphase slope-failure deposits on the Maleník Ridge, Outer Western Carpathians, Quat. Int., 470, 38, 10.1016/j.quaint.2017.10.048

Margielewski, 2006, Structural control and types of movements of rock mass in anisotropic rocks: case studies in the Polish Flysch Carpathians, Geomorphology, 77, 47, 10.1016/j.geomorph.2006.01.003

Margielewski, 2006, Records of the Late Glacial–Holocene palaeoenvironmental changes in landslide forms and deposits of the Beskid Makowski and Beskid Wyspowy Mts. area (Polish outer Carpathians), Folia Quat., 76

Margielewski, 2010, A Neolithic yew bow in the Polish Carpathians, Catena, 80, 141, 10.1016/j.catena.2009.11.001

Margielewski, 2011, Record of the Meso- and Neoholocene palaeoenvironmental changes in the Jesionowa landslide peat bog (Beskid Sadecki MTS. Polish Outer Carpathians), Geochronometria, 38, 138, 10.2478/s13386-011-0014-9

Meentemeyer, 2000, Automated mapping of conformity between topographic and geological surfaces, Comput. Geosci., 26, 815, 10.1016/S0098-3004(00)00011-X

Menčík, 1983

Migoń, 2017, Large-scale slope remodelling by landslides – geomorphic diversity and geological controls, Kamienne Mts., Central Europe, Geomorphology, 289, 134, 10.1016/j.geomorph.2016.09.037

Němčok, 1972, Gravitational slope deformation in high mountains, 13, 132

Ortuño, 2017, Potential of airborne LiDAR data analysis to detect subtle landforms of slope failure: Portainé, Central Pyrenees, Geomorphology, 295, 364, 10.1016/j.geomorph.2017.07.015

Pánek, 2016, Temporal behavior of deep-seated gravitational slope deformations: a review, Earth Sci. Rev., 156, 14, 10.1016/j.earscirev.2016.02.007

Pánek, 2009, Late Holocene catastrophic slope collapse affected by deep-seated gravitational deformation in flysch: Ropice Mountain, Czech Republic, Geomorphology, 103, 414, 10.1016/j.geomorph.2008.07.012

Pánek, 2011, Deep-seated gravitational slope deformations in the highest parts of the Czech Flysch Carpathians: evolutionary model based on kinematic analysis, electrical imaging and trenching, Geomorphology, 129, 92, 10.1016/j.geomorph.2011.01.016

Pánek, 2013, Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia), Quat. Res., 80, 179, 10.1016/j.yqres.2013.03.009

Pánek, 2014, Large Late Pleistocene landslides from the marginal slope of the Flysch Carpathians, Landslides, 10.1007/s10346-013-0463-8

Pánek, 2017, Late Quaternary sackungen in the highest mountains of the Carpathians, Quat. Sci. Rev., 159, 47, 10.1016/j.quascirev.2017.01.008

Perrone, 2014, Electrical resistivity tomography technique for landslide investigation: a review, Earth-Science Rev., 135, 65, 10.1016/j.earscirev.2014.04.002

Reimer, 2013, IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon, 55, 1869, 10.2458/azu_js_rc.55.16947

Santangelo, 2015, A method for the assessment of the influence of bedding on landslide abundance and types, Landslides, 12, 295, 10.1007/s10346-014-0485-x

Šilhán, 2010, Fossil and recent debris flows in medium–high mountains (Moravskoslezské Beskydy Mts, Czech Republic), Geomorphology, 124, 238, 10.1016/j.geomorph.2010.03.026

Starkel, 2013, Progress in the Holocene chrono-climatostratigraphy of Polish territory, Geochronometria, 40, 1, 10.2478/s13386-012-0024-2

Suski, 2010, Localization and characterization of an active fault in an urbanized area in central Guatemala by means of geoelectrical imaging, Tectonophysics, 480, 88, 10.1016/j.tecto.2009.09.028

Tábořík, 2017, Geophysical anatomy of counter-slope scarps in sedimentary flysch rocks (Outer Western Carpathians), Geomorphology, 276, 59, 10.1016/j.geomorph.2016.09.038

Tommasi, 2009, Buckling of high natural slopes: the case of Lavini di Marco (Trento-Italy), Eng. Geol., 109, 93, 10.1016/j.enggeo.2009.02.002

Woodcock, 1986, Strike-slip duplexes, J. Struct. Geol., 8, 725, 10.1016/0191-8141(86)90021-0