Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations
Tài liệu tham khảo
Ahmed, 2010, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments, Desalination, 261, 3, 10.1016/j.desal.2010.04.062
Bayarri, 2005, Photocatalytic degradation of 2,4-dichlorophenol by TiO2/UV: kinetics, actinometries and models, Catal. Today, 101, 227, 10.1016/j.cattod.2005.03.019
Bekbolet, 1996, Photocatalytic degradation kinetics of humic acid in aqueous TiO2 dispersions: the influence of hydrogen peroxide and bicarbonate ion, Water Sci. Technol., 34, 37, 10.1016/S0273-1223(96)00789-5
Burda, 2003, Enhanced nitrogen doping in tio2 nanoparticles, Nano Lett., 3, 1049, 10.1021/nl034332o
Busca, 2008, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater., 160, 265, 10.1016/j.jhazmat.2008.03.045
Chen, 1999, Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2, Appl. Catal. B, 23, 143, 10.1016/S0926-3373(99)00068-5
Chin, 2004, Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream, Chemosphere, 57, 547, 10.1016/j.chemosphere.2004.07.011
Chiou, 2008, Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions, Sep. Purif. Technol., 62, 559, 10.1016/j.seppur.2008.03.009
Demeestere, 2005, Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide, Appl. Catal. B, 61, 140, 10.1016/j.apcatb.2005.04.017
Egorov, 2008, Highly efficient extraction of phenols and aromatic amines into novel ionic liquids incorporating quaternary ammonium cation, Sep. Purif. Technol., 63, 710, 10.1016/j.seppur.2008.06.024
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0
Ge, 2008, Distribution of chlorination products of phenols under various pHs in water disinfection, Desalination, 225, 156, 10.1016/j.desal.2007.03.016
Jain, 2008, Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide, J. Hazard. Mater., 152, 216, 10.1016/j.jhazmat.2007.06.119
Juang, 2008, Experimental observations on the effect of added dispersing agent on phenol biodegradation in a microporous membrane bioreactor, J. Hazard. Mater., 151, 746, 10.1016/j.jhazmat.2007.06.046
Khan, 1999, Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes, J. Phys. Chem. B, 103, 7184, 10.1021/jp990066k
Khan, 2002, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297, 2243, 10.1126/science.1075035
Kubelka, 1948, New contributions to the optics of intensely light-scattering materials. Part I, J. Opt. Soc. Am., 38, 448, 10.1364/JOSA.38.000448
Kusvuran, 2005, Photocatalytic degradation kinetics of di- and tri-substituted phenolic compound in aqueous solution by TiO2/UV, Appl. Catal. B, 58, 211, 10.1016/j.apcatb.2004.11.023
Lee, 2008, Factors affecting phenol transfer through polydimethylsiloxane composite membrane, Desalination, 234, 416, 10.1016/j.desal.2007.09.112
Magalhães, 2004, Catalytic activity of porous TiO2 obtained by sol–gel process in the degradation of phenol, J. Non-Cryst. Solids, 348, 185, 10.1016/j.jnoncrysol.2004.08.166
Merabet, 2009, Photocatalytic degradation of indole in a circulating upflow reactor by UV/TiO2 process – Influence of some operating parameters, J. Hazard. Mater., 166, 1244, 10.1016/j.jhazmat.2008.12.047
Mohamed, 2005, Preparation of TiO2-ZSM-5 zeolite for photodegradation of EDTA, Mol. Catal. A, 238, 151, 10.1016/j.molcata.2005.05.023
Mohaputra, 2007, Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2−xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode, J. Phys. Chem. C, 111, 8677, 10.1021/jp071906v
Mortaheb, 2008, Study on a new surfactant for removal of phenol from wastewater by emulsion liquid membrane, J. Hazard. Mater., 160, 582, 10.1016/j.jhazmat.2008.03.095
Nakano, 2005, Electrical characterization of band gap states in C-doped TiO2 films, Appl. Phys. Lett., 87, 052111, 10.1063/1.2008376
Naley, 1983, Analysis of phenols in sea water by fluorometry: direct analysis of the water phase, Bull. Environ. Contam. Toxicol., 31, 494, 10.1007/BF01622283
Nie, X., Sohlberg, K., 2003. The influence of surface reconstruction and C-impurities on photocatalytic water dissociation by TiO2. In: Nazri, G.-A. et al. (Eds.), Materials Research Society Symposium Proceedings on Materials and Technology for Hydrogen Economy, 1–5 December Meeting, Boston, MA, 801, 205.
Oppenlander, 2003
Parida, 2006, Physico-chemical characterization and photocatalytic activity of zinc oxide prepared by various methods, J. Colloid Interface Sci., 298, 787, 10.1016/j.jcis.2005.12.053
Park, 2005, Photocatalytic reactivities of nafion-coated TiO2 for the degradation of charged organic compounds under UV or Visible light, J. Phys. Chem. B, 109, 11667, 10.1021/jp051222s
Parsons, 2004
Patra, 2008, Electro-oxidation of phenol on polyethylenedioxythiophene conductive-polymer-deposited stainless steel substrate, J. Electrochem. Soc., 155, F23, 10.1149/1.2827991
Petukhov, 1997, Effect of molecular mobility on kinetics of an electrochemical Langmuir–Hinshelwood reaction, Chem. Phys. Lett., 277, 539, 10.1016/S0009-2614(97)00916-0
Saha, 1999, Toxicity of phenol to fish and aquatic ecosystem, Bull. Environ. Contam. Toxicol., 63, 195, 10.1007/s001289900966
Sclafani, 1996, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions, J. Phys. Chem., 100, 13655, 10.1021/jp9533584
Shaban, 2007, Surface grooved visible light active carbon modified (CM)-n-TiO2 thin films for efficient photoelectrochemical splitting of water, Chem. Phys., 339, 73, 10.1016/j.chemphys.2007.07.019
Shaban, 2008, Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water, Int. J. Hydrogen Energy, 33, 1118, 10.1016/j.ijhydene.2007.11.026
Shaban, 2009, Carbon modified (CM)-n-TiO2 thin films for efficient water splitting to H2 and O2 under xenon lamp light and natural sunlight illuminations, J. Solid State Electrochem., 13, 1025, 10.1007/s10008-009-0823-4
Shaban, 2010, Efficient photoelectrochemical splitting of water to H2 and O2 at nanocrystalline carbon modified (CM)-n-TiO2 and (CM)-n-Fe2O3 thin films, Int. J. Nanotechnol., 7, 69, 10.1504/IJNT.2010.029549
Shaban, 2010, Efficient photoelectrochemical splitting of water to H2 and O2 at nanocrystalline carbon modified (CM)-n-TiO2 thin films, Solid State Phenomena, 162, 179, 10.4028/www.scientific.net/SSP.162.179
Sharma, 2009, Nonylphenol, octylphenol, and Bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment, J. Environ. Sci. Health Part A, 44, 423, 10.1080/10934520902719704
Shawabkeh, 2007, Absorption of phenol and methylene blue by activated carbon from pecan shells, Colloid J., 69, 355, 10.1134/S1061933X07030143
Stylidi, 2004, Visible light-induced photocatalytic degradation of Acid Orange in aqueous TiO2 suspensions, Appl. Catal. B, 47, 189, 10.1016/j.apcatb.2003.09.014
Tauc, 1966, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B., 15, 627, 10.1002/pssb.19660150224
Valentin, 2005, Theory of carbon doping of titanium dioxide’, Chem. Mater., 17, 6656, 10.1021/cm051921h
Wang, 2005, Effects of dopant states on photoactivity in carbon-doped TiO2, J. Phys.: Condens. Matter., 17, L209, 10.1088/0953-8984/17/21/L01
Wang, 1998, The heterogeneous photocatalytic degradation, intermediates and mineralization for the aqueous solution of cresols and nitrophenols, J. Hazard. Mater., 59, 251, 10.1016/S0304-3894(97)00151-9
Wang, 2009, Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR), J. Hazard. Mater., 169, 926, 10.1016/j.jhazmat.2009.04.036
Wu, 2008, Kinetic study of phenol recovery using phase-transfer catalysis in horizontal membrane reactor, Chem. Eng. J., 144, 502, 10.1016/j.cej.2008.07.039
Xu, 2007, Photoresponse of visible light active carbon modified-n-TiO2 thin films, Electrochem. Solid-State Lett., 10, B56, 10.1149/1.2424271
Xu, 2006, Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination, Appl. Catal. B, 64, 312, 10.1016/j.apcatb.2005.11.008
Xu, 2007, Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting, Sol. Energy Mater. Sol. C, 91, 938, 10.1016/j.solmat.2007.02.010