Photocatalytic degradation of phenol in natural seawater using visible light active carbon modified (CM)-n-TiO2 nanoparticles under UV light and natural sunlight illuminations

Chemosphere - Tập 91 - Trang 307-313 - 2013
Yasser A. Shaban1, Mohamed A. El Sayed1, Amr A. El Maradny1, Radwan Kh. Al Farawati1, Mousa I. Al Zobidi1
1Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia

Tài liệu tham khảo

Ahmed, 2010, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments, Desalination, 261, 3, 10.1016/j.desal.2010.04.062 Bayarri, 2005, Photocatalytic degradation of 2,4-dichlorophenol by TiO2/UV: kinetics, actinometries and models, Catal. Today, 101, 227, 10.1016/j.cattod.2005.03.019 Bekbolet, 1996, Photocatalytic degradation kinetics of humic acid in aqueous TiO2 dispersions: the influence of hydrogen peroxide and bicarbonate ion, Water Sci. Technol., 34, 37, 10.1016/S0273-1223(96)00789-5 Burda, 2003, Enhanced nitrogen doping in tio2 nanoparticles, Nano Lett., 3, 1049, 10.1021/nl034332o Busca, 2008, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater., 160, 265, 10.1016/j.jhazmat.2008.03.045 Chen, 1999, Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2, Appl. Catal. B, 23, 143, 10.1016/S0926-3373(99)00068-5 Chin, 2004, Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream, Chemosphere, 57, 547, 10.1016/j.chemosphere.2004.07.011 Chiou, 2008, Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions, Sep. Purif. Technol., 62, 559, 10.1016/j.seppur.2008.03.009 Demeestere, 2005, Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide, Appl. Catal. B, 61, 140, 10.1016/j.apcatb.2005.04.017 Egorov, 2008, Highly efficient extraction of phenols and aromatic amines into novel ionic liquids incorporating quaternary ammonium cation, Sep. Purif. Technol., 63, 710, 10.1016/j.seppur.2008.06.024 Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0 Ge, 2008, Distribution of chlorination products of phenols under various pHs in water disinfection, Desalination, 225, 156, 10.1016/j.desal.2007.03.016 Jain, 2008, Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide, J. Hazard. Mater., 152, 216, 10.1016/j.jhazmat.2007.06.119 Juang, 2008, Experimental observations on the effect of added dispersing agent on phenol biodegradation in a microporous membrane bioreactor, J. Hazard. Mater., 151, 746, 10.1016/j.jhazmat.2007.06.046 Khan, 1999, Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes, J. Phys. Chem. B, 103, 7184, 10.1021/jp990066k Khan, 2002, Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297, 2243, 10.1126/science.1075035 Kubelka, 1948, New contributions to the optics of intensely light-scattering materials. Part I, J. Opt. Soc. Am., 38, 448, 10.1364/JOSA.38.000448 Kusvuran, 2005, Photocatalytic degradation kinetics of di- and tri-substituted phenolic compound in aqueous solution by TiO2/UV, Appl. Catal. B, 58, 211, 10.1016/j.apcatb.2004.11.023 Lee, 2008, Factors affecting phenol transfer through polydimethylsiloxane composite membrane, Desalination, 234, 416, 10.1016/j.desal.2007.09.112 Magalhães, 2004, Catalytic activity of porous TiO2 obtained by sol–gel process in the degradation of phenol, J. Non-Cryst. Solids, 348, 185, 10.1016/j.jnoncrysol.2004.08.166 Merabet, 2009, Photocatalytic degradation of indole in a circulating upflow reactor by UV/TiO2 process – Influence of some operating parameters, J. Hazard. Mater., 166, 1244, 10.1016/j.jhazmat.2008.12.047 Mohamed, 2005, Preparation of TiO2-ZSM-5 zeolite for photodegradation of EDTA, Mol. Catal. A, 238, 151, 10.1016/j.molcata.2005.05.023 Mohaputra, 2007, Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of TiO2−xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode, J. Phys. Chem. C, 111, 8677, 10.1021/jp071906v Mortaheb, 2008, Study on a new surfactant for removal of phenol from wastewater by emulsion liquid membrane, J. Hazard. Mater., 160, 582, 10.1016/j.jhazmat.2008.03.095 Nakano, 2005, Electrical characterization of band gap states in C-doped TiO2 films, Appl. Phys. Lett., 87, 052111, 10.1063/1.2008376 Naley, 1983, Analysis of phenols in sea water by fluorometry: direct analysis of the water phase, Bull. Environ. Contam. Toxicol., 31, 494, 10.1007/BF01622283 Nie, X., Sohlberg, K., 2003. The influence of surface reconstruction and C-impurities on photocatalytic water dissociation by TiO2. In: Nazri, G.-A. et al. (Eds.), Materials Research Society Symposium Proceedings on Materials and Technology for Hydrogen Economy, 1–5 December Meeting, Boston, MA, 801, 205. Oppenlander, 2003 Parida, 2006, Physico-chemical characterization and photocatalytic activity of zinc oxide prepared by various methods, J. Colloid Interface Sci., 298, 787, 10.1016/j.jcis.2005.12.053 Park, 2005, Photocatalytic reactivities of nafion-coated TiO2 for the degradation of charged organic compounds under UV or Visible light, J. Phys. Chem. B, 109, 11667, 10.1021/jp051222s Parsons, 2004 Patra, 2008, Electro-oxidation of phenol on polyethylenedioxythiophene conductive-polymer-deposited stainless steel substrate, J. Electrochem. Soc., 155, F23, 10.1149/1.2827991 Petukhov, 1997, Effect of molecular mobility on kinetics of an electrochemical Langmuir–Hinshelwood reaction, Chem. Phys. Lett., 277, 539, 10.1016/S0009-2614(97)00916-0 Saha, 1999, Toxicity of phenol to fish and aquatic ecosystem, Bull. Environ. Contam. Toxicol., 63, 195, 10.1007/s001289900966 Sclafani, 1996, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions, J. Phys. Chem., 100, 13655, 10.1021/jp9533584 Shaban, 2007, Surface grooved visible light active carbon modified (CM)-n-TiO2 thin films for efficient photoelectrochemical splitting of water, Chem. Phys., 339, 73, 10.1016/j.chemphys.2007.07.019 Shaban, 2008, Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water, Int. J. Hydrogen Energy, 33, 1118, 10.1016/j.ijhydene.2007.11.026 Shaban, 2009, Carbon modified (CM)-n-TiO2 thin films for efficient water splitting to H2 and O2 under xenon lamp light and natural sunlight illuminations, J. Solid State Electrochem., 13, 1025, 10.1007/s10008-009-0823-4 Shaban, 2010, Efficient photoelectrochemical splitting of water to H2 and O2 at nanocrystalline carbon modified (CM)-n-TiO2 and (CM)-n-Fe2O3 thin films, Int. J. Nanotechnol., 7, 69, 10.1504/IJNT.2010.029549 Shaban, 2010, Efficient photoelectrochemical splitting of water to H2 and O2 at nanocrystalline carbon modified (CM)-n-TiO2 thin films, Solid State Phenomena, 162, 179, 10.4028/www.scientific.net/SSP.162.179 Sharma, 2009, Nonylphenol, octylphenol, and Bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment, J. Environ. Sci. Health Part A, 44, 423, 10.1080/10934520902719704 Shawabkeh, 2007, Absorption of phenol and methylene blue by activated carbon from pecan shells, Colloid J., 69, 355, 10.1134/S1061933X07030143 Stylidi, 2004, Visible light-induced photocatalytic degradation of Acid Orange in aqueous TiO2 suspensions, Appl. Catal. B, 47, 189, 10.1016/j.apcatb.2003.09.014 Tauc, 1966, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B., 15, 627, 10.1002/pssb.19660150224 Valentin, 2005, Theory of carbon doping of titanium dioxide’, Chem. Mater., 17, 6656, 10.1021/cm051921h Wang, 2005, Effects of dopant states on photoactivity in carbon-doped TiO2, J. Phys.: Condens. Matter., 17, L209, 10.1088/0953-8984/17/21/L01 Wang, 1998, The heterogeneous photocatalytic degradation, intermediates and mineralization for the aqueous solution of cresols and nitrophenols, J. Hazard. Mater., 59, 251, 10.1016/S0304-3894(97)00151-9 Wang, 2009, Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR), J. Hazard. Mater., 169, 926, 10.1016/j.jhazmat.2009.04.036 Wu, 2008, Kinetic study of phenol recovery using phase-transfer catalysis in horizontal membrane reactor, Chem. Eng. J., 144, 502, 10.1016/j.cej.2008.07.039 Xu, 2007, Photoresponse of visible light active carbon modified-n-TiO2 thin films, Electrochem. Solid-State Lett., 10, B56, 10.1149/1.2424271 Xu, 2006, Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination, Appl. Catal. B, 64, 312, 10.1016/j.apcatb.2005.11.008 Xu, 2007, Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting, Sol. Energy Mater. Sol. C, 91, 938, 10.1016/j.solmat.2007.02.010