Elucidating the dialogue between arbuscular mycorrhizal fungi and polyamines in plants

Sheng-Min Liang1, Feng-Ling Zheng1, Qiang-Sheng Wu1
1College of Horticulture and Gardening, Yangtze University, Jingzhou, China

Tóm tắt

The most dominant arbuscular mycorrhizal (AM) symbiont can be established on roots of most terrestrial plants by beneficial AM fungi. A type of polycationic and aliphatic compounds, polyamines (PAs), are involved in plant physiological activities including stress responses. Interestingly, small amounts of PAs such as putrescine (Put) and spermidine (Spd) were found in AM fungal spores, and they are considered to be a component involved in mycorrhizal development, including mycorrhizal colonization, appressoria formation, spore germination and mycelial growth. Thus, PAs are regulatory factors in plant-AM symbiosis. Inoculation of AM fungi also affects the metabolism of endogenous PAs in host plants, including PAs synthesis and catabolism, thus, regulating various physiological events of the host. As a result, there seems to be a dialogue between PAs and AM fungi. Existing knowledge makes us understand that endogenous or exogenous PAs are an important regulator factor in the growth of AM fungi, as well as a key substance to colonize roots, which further enhances mycorrhizal benefits in plant growth responses and root architecture. The presence of AM symbiosis in roots alters the dynamic balance of endogenous PAs, triggering osmotic adjustment and antioxidant defense systems, maintaining charge balance and acting as a stress signalling molecule, which affects various physiological activities, such as plant growth, nutrient acquisition, stress tolerance and improvement of root architecture. This review mainly elucidated (i) what is the role of fungal endogenous PAs in fungal growth and colonization of roots in host plants? (ii) how AM fungi and PAs interact with each other to alter the growth of fungi and plants and subsequent activities, providing the reference for the future combined use of AM fungi and PAs in agricultural production, although there are still many unknown events in the dialogue.

Tài liệu tham khảo

Agnihotri R, Sharma MP, Bucking H, Dames JF, Bagyaraj DJ (2022) Methods for assessing the quality of AM fungal bio-fertilizer: Retrospect and future directions. World J Microbiol Biotechnol 38:97. https://doi.org/10.1007/s11274-022-03288-3 Agurla S, Gayatri G, Raghavendra AS (2018) Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure. Protoplasma 255:153–162. https://doi.org/10.1007/s00709-017-1139-3 Alcázar R, Bueno M, Tiburcio AF (2020) Polyamines: Small amines with large effects on plant abiotic stress tolerance. Cells 9(11):2373. https://doi.org/10.3390/cells9112373 Amini S, Maali-Amiri R, Kazemi-Shahandashti SS, López-Gómez M, Kariman K (2021) Effect of cold stress on polyamine metabolism and antioxidant responses in chickpea. J Plant Physiol 258:153387. https://doi.org/10.1016/j.jplph.2021.153387 Antoniou C, Zarza X, Gohari G, Rad SP, Fotopoulos V (2021) Involvement of polyamine metabolism in the response of Medicago truncatula genotypes to salt stress. Plants 10(2):269. https://doi.org/10.3390/plants10020269 Bhatt P, Joshi D, Kumar N, Kumar N (2019) Recent trends to study the functional analysis of mycorrhizosphere. In: Varma A, Choudhary D (eds) Mycorrhizosphere and Pedogenesis. Springer, Singapore, pp 181–190. https://doi.org/10.1007/978-981-13-6480-8_11 Bose SK, Howlader P (2020) Melatonin plays multifunctional role in horticultural crops against environmental stresses: A review. Environ Exp Bot 176:104063. https://doi.org/10.1016/j.envexpbot.2020.104063 Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol R 66:447–459. https://doi.org/10.1128/MMBR.66.3.447-459.2002 Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945. https://doi.org/10.3389/fpls.2018.01945 Cheng Y, Ma W, Li X, Miao W, Zheng L, Cheng B (2012) Polyamines stimulate hyphal branching and infection in the early stage of Glomus etunicatum colonization. World J Microb Biotechnol 28(4):1615–1621. https://doi.org/10.1007/s11274-011-0967-0 Choudhary S, Wani KI, Naeem M, Masroor M, Khan MA, Aftab T (2022) Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. J Plant Growth Regul. https://doi.org/10.1007/s00344-022-10584-7 El Ghachtouli N, Paynot M, Martin-Tanguy J, Morandi D, Gianinazzi S (1996) Effect of polyamines and polyamine biosynthesis inhibitors on spore germination and hyphal growth of Glomus mosseae. Mycol Res 100:597–600. https://doi.org/10.1016/S0953-7562(96)80014-1 El Ghachtouli N, Paynot M, Morandi D, Martin-Tanguy J, Gianinazzi S (1995) The effect of polyamines on endomycorrhizal infection of wild-type Pisum sativum, cv Frisson (nod+myc+) and 2 mutants (nod–myc+ and nod–myc–). Mycorrhiza 5:189–192. https://doi.org/10.1007/s005720050058 Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23(1):71–86. https://doi.org/10.1007/s00572-012-0449-8 Even-Chen Z, Mattoo AK, Goren R (1982) Inhibition of ethylene biosynthesis by aminoethoxyvinylglycine and by polyamines shunts label from 3,4-[14 C]methionine into spermidine in aged orange peel discs. Plant Physiol 69:385–388. https://doi.org/10.1104/pp.69.2.385 Faixo S, Gehin N, Balayssac S, Gilard V, Garrigues JC (2021) Current trends and advances in analytical techniques for the characterization and quantification of biologically recalcitrant organic species in sludge and wastewater: A review. Anal Chim Acta 1152:338284. https://doi.org/10.1016/j.aca.2021.338284 Feng HC, Fu RX, Hou XQ, Lv Y, Zhang N, Liu YP, Xu ZH, Miao YZ, Krell T, Shen QR, Zhang RF (2021) Chemotaxis of beneficial rhizobacteria to root exudates: The first step towards root–microbe rhizosphere interactions. Int J Mol Sci 22(13):6655. https://doi.org/10.3390/ijms22136655 Freitas VS, de Souza Miranda R, Costa JH, de Oliveira DF, de Oliveira Paula S, de Castro Miguel E, Gomes-Filho E (2018) Ethylene triggers salt tolerance in maize genotypes by modulating polyamine catabolism enzymes associated with H2O2 production. Environ Exp Bot 145:75–86. https://doi.org/10.1016/j.envexpbot.2017.10.022 Gao CH, Sheteiwy MS, Han JJ, Dong ZR, Pan RH, Guan YJ, Hamoud AY, Hu J (2020) Polyamine biosynthetic pathways and their relation with the cold tolerance of maize (Zea mays L.) seedlings. Plant Signal Behav 15(11):1807722. https://doi.org/10.1080/15592324.2020.1807722 García-Garrido JM, Lendzemo V, Castellanos-Morales V, Steinkellner S, Vierheilig H (2009) Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza 19:449–459. https://doi.org/10.1007/s00572-009-0265-y Garg N, Saroy K (2020) Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress. Environ Sci Pollut Res 27:3042–3064. https://doi.org/10.1007/s11356-019-07300-6 Garg N, Sharma A (2019) Role of putrescine (Put) in imparting salt tolerance through modulation of put metabolism, mycorrhizal and rhizobial symbioses in Cajanus cajan (L.) Millsp. Symbiosis 79(1):59–74. https://doi.org/10.1007/s13199-019-00621-7 Goicoechea N, Szalai G, Antolín MC, Sanchez-Diazl M, Paldi E (1998) Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. J Plant Physiol 153(5–6):706–711. https://doi.org/10.1016/S0176-1617(98)80224-1 Gonzalez ME, Jasso-Robles FI, Flores-Hernández E, Rodríguez-Kessler M, Pieckenstain FL (2021) Current status and perspectives on the role of polyamines in plant immunity. Ann Appl Biol 178(2):244–255. https://doi.org/10.1111/aab.12670 Groß F, Rudolf EE, Thiele B, Durner J, Astier J (2017) Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana. J Exp Bot 68(9):2149–2162. https://doi.org/10.1093/jxb/erx105 Hashem A, Abd_Allah EF, Alqarawi AA, Aldubise A, Egamberdievaet D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10(1):230–242. https://doi.org/10.1080/17429145.2015.1052025 Harshavardhan M, Kumar P (2020) Arbuscular mycorrhiza fungi and polyamines in mitigation of rhizosphere salts: with special reference to leaf pigmentation. Plant Arch 20:3480–3486 Ha-Tran DM, Nguyen TTM, Hung SH, Huang E, Huang CC (2021) Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. Int J Mol Sci 22(6):3154. https://doi.org/10.3390/ijms22063154 Hidri R, Barea JM, Mahmoud MB, Abdelly C, Azcón R (2016) Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological and antioxidant activities of this species under non-saline and saline conditions. J Plant Physiol 201:28–41. https://doi.org/10.1016/j.jplph.2016.06.013 Hrselova H, Gryndler M (2000) Effect of spermine on proliferation of hyphae of Glomus fistulosum, an arbuscular mycorrhizal fungus, in maize roots. Folia Microbiol 45:167–171. https://doi.org/10.1007/BF02817418 Hu Y, Chen B (2020) Arbuscular mycorrhiza induced putrescine degradation into γ-aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water-stressed maize plants. Mycorrhiza 30(2):329–339. https://doi.org/10.1007/s00572-020-00952-0 Jiménez Bremont JF, Marina M, de la Luz Guerrero-González M, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Gárriz A (2014) Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front Plant Sci 5:95–104. https://doi.org/10.3389/fpls.2014.00095 Kamiab F, Tavassolian I, Hosseinifarahi M (2020) Biologia futura: the role of polyamine in plant science. Biol Futura 71(3):183–194. https://doi.org/10.1007/s42977-020-00027-3 Kobayashi Y, Maeda T, Yamaguchi K, Kameoka H, Tanaka S, Ezawa T, Shigenobu S, Kawaguchi M (2018) The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics 19:465. https://doi.org/10.1186/s12864-018-4853-0 Krishnan S, Merewitz EB (2017) Polyamine application effects on gibberellic acid content in creeping bentgrass during drought stress. J Am Soc Hortic Sci 142:135–142. https://doi.org/10.21273/JASHS03991-16 Li Z, Zhang Y, Peng D, Wang X, Peng Y, He X, Zhang X, Xiao M, Huang L, Yan Y (2015) Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling. Front Physiol 6:280. https://doi.org/10.3389/fphys.2015.00280 Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153(1):137–147. https://doi.org/10.1016/j.envpol.2007.07.012 Malar MC, Kruger M, Kruger C, Wang Y, Stajich JE, Keller J, Chen ECH, Yildirir G, Villeneuve-Laroche M, Roux C, Delaux P-M, Corradi N (2021) The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis. Curr Biol 31:1570–1577. https://doi.org/10.3389/fphys.2015.00280 Martinez DH, Payyavula RS, Kudithipudi C, Shen Y, Melis A (2020) Genetic attenuation of alkaloids and nicotine content in tobacco (Nicotiana tabacum). Planta 251(4):1–14. https://doi.org/10.1007/s00425-020-03387-1 Massa N, Cesaro P, Todeschini V, Capraro J, Bona E (2020) Selected autochthonous rhizobia, applied in combination with AM fungi, improve seed quality of common bean cultivated in reduced fertilization condition. Appl Soil Ecol 148:103507. https://doi.org/10.1016/j.apsoil.2020.103507 Morandi D (1989) Effect of xenobiotics on endomycorrhizal in-fection and isoflavonoid accumulation in soybean roots. Plant Physiol Biochem 27:697–701 Morin E, Miyauchi S, Clemente HS, Chen EC, Pelin A, Providencia I, Ndikumana S, Beauder D, Hainaut M, Drula E, Kuo A, Tang NW, Roy S, Viala J, Henrissat B, Grigoriev IV, Corradi N, Roux C, Martin FM (2019) Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights species genetic features in Glomeromycotina. New Phytol 222:1584–1598. https://doi.org/10.1111/nph.15687 Mustafavi SH, Badi HN, Sękara A, Mehrafarin A, Rafiee H (2018) Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant 40(6):1–19. https://doi.org/10.1007/s11738-018-2671-2 Niemi K, Häggman H, Sarjala T (2002) Effects of exogenous diamines on the interaction between ectomycorrhizal fungi and adventitious root formation in Scots pine in vitro. Tree Physiol 22(6):373–381. https://doi.org/10.1093/treephys/22.6.373 Niemi K, Julkunen-Tiitto R, Haggman H, Sarjala T (2007) Suillus variegatus causes significant changes in the content of individual polyamines and flavonoids in Scots pine seedlings during mycorrhiza formation in vitro. J Exp Bot 58:391–401. https://doi.org/10.1093/jxb/erl209 Nogales A, Aguirreolea J, María SE, Camprubí A, Calvet C (2009) Response of mycorrhizal grapevine to Armillaria mellea inoculation: disease development and polyamines. Plant Soil 317(1):177–187. https://doi.org/10.1007/s11104-008-9799-6 Otlewska A, Migliore M, Dybka-Stępień K, Manfredini A, Struszczyk-Świta K, Napoli R, Białkowska A, Canfora L, Pinzari F (2020) When salt meddles between plant, soil, and microorganisms. Front Plant Sci 11:1429. https://doi.org/10.3389/fpls.2020.553087 Ouledali S, Ennajeh M, Ferrandino A, Khemira H, Schubert A, Secchi F (2019) Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by ABA in drought-stressed olive plants. S Afr J Bot 121:152–158. https://doi.org/10.1016/j.sajb.2018.10.024 Paradi I, Bratek Z, Lang F (2003) Influence of arbuscular mycorrhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata. Biol Plant 46(4):563–569. https://doi.org/10.1023/A:1024819729317 Plett JM, Plett KL, Wong-Bajracharya J, Pereira MF, Costa MD, Kohler A, Martin F, Anderson IC (2020) Mycorrhizal effector PaMiSSP10b alters polyamine biosynthesis in Eucalyptus root cells and promotes root colonization. New Phytol 228(2):712–727. https://doi.org/10.1111/nph.16759 Priya M, Sharma L, Kaur R, Bindumadhava H, Nair RM, Siddique KHM, Nayyar H (2019) GABA (γ-aminobutyric acid), as a thermo-protectant, to improve the reproductive function of heat-stressed mungbean plants. Sci Rep 9:7788. https://doi.org/10.1038/s41598-019-44163-w Raklami A, Bechtaoui N, Tahiri A, Anli M, Oufdou K (2019) Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front Microbiol 10:1106. https://doi.org/10.3389/fmicb.2019.01106 Ramazan S, Nazir I, Yousuf W, John R (2022) Environmental stress tolerance in maize (Zea mays): role of polyamine metabolism. Funct Plant Biol. https://doi.org/10.1071/FP21324 Reitz M, Waiters D, Moerschbacher B (1995) Germination and appressorial formation by uredospores of Uromyces viciae-fabae exposed to inhibitors of polyamine biosynthesis. Eur J Plant Pathol 101:573–578. https://doi.org/10.1007/BF01874483 Rezvanypour S, Hatamzadeh A, Elahinia SA, Asghari HR (2015) Exogenous polyamines improve mycorrhizal development and growth and flowering of Freesia hybrida. J Horti Res 23:17–25. https://doi.org/10.2478/johr-2015-0013 Salloum MS, Menduni MF, Benavides MP, Larrauri M, Luna CM, Silvente S (2018) Polyamines and flavonoids: key compounds in mycorrhizal colonization of improved and unimproved soybean genotypes. Symbiosis 76:265–275. https://doi.org/10.1007/s13199-018-0558-z Samuel SS, Veeramani A (2021) Advantages of arbuscular mycorrhizal fungi (AMF) production for the profitability of agriculture and biofertilizer industry. In: Radhakrishnan R (ed) Mycorrhizal Fungi: Utilization in Agriculture and Forestry. IntechOpen, London, United Kingdom, pp 31–46. https://doi.org/10.5772/intechopen.95458 Sannazzaro AI, Álvarez CL, Menéndez AB, Pieckenstain FL, Albertó EO, Ruiz OA (2004) Ornithine and arginine decarboxylase activities and effect of some polyamine biosynthesis inhibitors on Gigaspora rosea germinating spores. FEMS Microbiol Lett 230(1):115–121. https://doi.org/10.1016/S0378-1097(03)00880-2 Sannazzaro AI, Echeverría M, Albertó EO, Ruiz OA, Menéndez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol Bioch 45(1):39–46. https://doi.org/10.1016/j.plaphy.2006.12.008 Saroy K, Garg N (2021) Relative effectiveness of arbuscular mycorrhiza and polyamines in modulating ROS generation and ascorbate-glutathione cycle in Cajanus cajan under nickel stress. Environ Sci Pollut R 28:48872–48889. https://doi.org/10.1007/s11356-021-13878-7 Sharma K, Gupta S, Thokchom SD, Jangir P, Kapoor R (2021) Arbuscular mycorrhiza-mediated regulation of polyamines and aquaporins during abiotic stress: deep insights on the recondite players. Front Plant Sci 12:642101. https://doi.org/10.3389/fpls.2021.642101 Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296. https://doi.org/10.1007/s00572-008-0180-7 Shi S, Wen M, Dong X, Zhang L, He XH (2021) Arbuscular mycorrhizal symbiosis contribute significant benefits to growth and quality of mulberry plants. In: Razdan MK, Thomas TD (eds) Mulberry: Genetic Improvement in Context of Climate Change. CRC Press, Boca Raton, FL, USA, pp 180–187 Souza SCR, Souza LA, Schiavinato MA, Silvaa FMO, Andrade SAL (2020) Zinc toxicity in seedlings of three trees from the Fabaceae associated with arbuscular mycorrhizal fungi. Ecotox Environ Safe 195:110450. https://doi.org/10.1016/j.ecoenv.2020.110450 Spormann S, Soares C, Teixeira J, Fidalgo F (2021) Polyamines as key regulatory players in plants under metal stress–A way for an enhanced tolerance. Ann Appl Biol 178(2):209–226. https://doi.org/10.1111/aab.12660 Sun XP, Chen WB, Ivanov S, MacLean AM, Wight H, Ramaraj T, Mudge J, Harrison MJ, Fei ZJ (2019) Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme) and its bacterial endosymbionts. New Physiol 221:1556–1573. https://doi.org/10.1111/nph.15472 Sundararajan S, Sivakumar HP, Nayeem S, Rajendran V, Subiramani S, Ramalingam S (2021) Influence of exogenous polyamines on somatic embryogenesis and regeneration of fresh and long-term cultures of three elite indica rice cultivars. Cereal Res Commun 49(2):245–253. https://doi.org/10.1007/s42976-020-00098-x Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790. https://doi.org/10.1146/annurev.bi.53.070184.003533 Tailor A, Bhatla SC (2021) Polyamine homeostasis modulates plasma membrane- and tonoplast-associated aquaporin expression in etiolated salt-stressed sunflower (Helianthus annuus L.) seedlings. Protoplasma 258:661–672. https://doi.org/10.1007/s00709-020-01589-8 Tailor A, Tandon R, Bhatla SC (2019) Nitric oxide modulates polyamine homeostasis in sunflower seedling cotyledons under salt stress. Plant Signal Behav 14:1667730. https://doi.org/10.1080/15592324.2019.1667730 Talaat NB, Shawky BT (2013) Modulation of nutrient acquisition and polyamine pool in salt-stressed wheat (Triticum aestivum L.) plants inoculated with arbuscular mycorrhizal fungi. Acta physiol Planta 35(8):2601–2610. https://doi.org/10.1007/s11738-013-1295-9 Tarkowski ŁP, Signorelli S, Höfte M (2020) γ-Aminobutyric acid and related amino acids in plant immune responses: emerging mechanisms of action. Plant Cell Environ 43(5):1103–1116. https://doi.org/10.1111/pce.13734 Tavladoraki P, Cona A, Angelini R (2016) Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front Plant Sci 7:824. https://doi.org/10.3389/fpls.2016.00824 Tiburcio AF, Alcazar R (2018) Potential applications of polyamines in agriculture and plant biotechnology. In: Alcazar R, Tiburcio AF (eds) Polyamines: Methods and Protocols. Methods in Molecular Biology, vol 1694. Springer Science + Business Media LLC, London, UK, pp 489–508. https://doi.org/10.1007/978-1-4939-7398-9_40 Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. P Natl Acad Sci USA 10:20117–20122. https://doi.org/10.1073/pnas.1313452110 Tsaniklidis G, Pappi P, Tsafouros A, Charova SN, Nikoloudakis N, Roussos PA, Paschalidis KA, Delis C (2020) Polyamine homeostasis in tomato biotic/abiotic stress cross-tolerance. Gene 727:144230. https://doi.org/10.1016/j.gene.2019.144230 Wang F (2017) Arbuscular mycorrhizas and ecosystem restoration. In: Wu QS (ed.) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer Singapore, pp:245–292. https://doi.org/10.1007/978-981-10-4115-0_11 Wu J, Hu J, Wang L, Zhao L, Ma F (2021) Responses of Phragmites australis to copper stress: A combined analysis of plant morphology, physiology and proteomics. Plant Biol 23(2):351–362. https://doi.org/10.1111/plb.13175 Wu QS, Cao MQ, Zou YN, Wu C, He XH (2016) Mycorrhizal colonization represents functional equilibrium on root morphology and carbon distribution of trifoliate orange grown in a split-root system. Sci Hortic 199:95–102. https://doi.org/10.1016/j.scienta.2015.12.039 Wu QS, He XH, Zou YN, Liu CY, Xiao J, Li Y (2012a) Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul 68(1):27–35. https://doi.org/10.1007/s10725-012-9690-6 Wu QS, Lou YG, Li Y (2015) Plant growth and tissue sucrose metabolism in the system of trifoliate orange and arbuscular mycorrhizal fungi. Sci Hortic 181:189–193. https://doi.org/10.1016/j.scienta.2014.11.006 Wu QS, Srivastava AK, Zou YN (2013) AMF-induced tolerance to drought stress in citrus: A review. Sci Hortic 164:77–87. https://doi.org/10.1016/j.scienta.2013.09.010 Wu QS, Zou YN (2009) The effect of dual application of arbuscular mycorrhizal fungi and polyamines upon growth and nutrient uptake on trifoliate orange (Poncirus trifoliata) seedlings. Not Bot Horti Agrobo 37:95–98. https://doi.org/10.15835/nbha3723237 Wu QS, Zou YN, Liu M, Kun C (2012b) Effects of exogenous putrescine on mycorrhiza, root system architecture, and physiological traits of Glomus mosseae-colonized trifoliate orange seedlings. Not Bot Horti Agrobo 40:80–85. https://doi.org/10.15835/nbha4027926 Xiao K, Abbt-Braun G, Horn H (2020) Changes in the characteristics of dissolved organic matter during sludge treatment: A critical review. Water Res 187:116441. https://doi.org/10.1016/j.watres.2020.116441 Yang L, Hong Xu, Wen XX, Liao YC (2016) Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates. J Integr Agric 15:2759–2774. https://doi.org/10.1016/S2095-3119(16)61366-7 Yanık F, Çetinbaş-Genç A, Vardar F (2020) Abiotic stress–induced programmed cell death in plants. In: Tripathi DK, Singh VP, Chauhan DK, Sharma S, Prasad SM, Dubey NK, Ramawat N (eds) Plant Life Under Changing Environment: Responses and Management. Academic Press, London, UK, pp 1–24. https://doi.org/10.1016/B978-0-12-818204-8.00015-1 Young CC, Chen LF (1997) Polyamines in humic acid and their effect on radical growth of lettuce seedlings. Plant Soi 195(1):143–149. https://doi.org/10.1023/A:1004247302388 Zapata PJ, Serrano M, García-Legaz MF, Pretel MT, Botella MA (2017) Short term effect of salt shock on ethylene and polyamines depends on plant salt sensitivity. Front Plant Sci 8:855. https://doi.org/10.3389/fpls.2017.00855 Zhang F, Zou YN, Wu QS, Kuča K (2020) Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ Exp Bot 171:103926. https://doi.org/10.1016/j.envexpbot.2019.103926 Zhong M, Wang Y, Shu S, Sun J, Guo SR (2020) Ectopic expression of CsTGase enhances salt tolerance by regulating polyamine biosynthesis, antioxidant activities and Na+/K+ homeostasis in transgenic tobacco. Plant Sci 296:110492. https://doi.org/10.1016/j.plantsci.2020.110492 Zou YN, Wu QS, Kuča K (2021a) Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol 23(Suppl 1):50–57. https://doi.org/10.1111/plb.13161 Zou YN, Zhang F, Srivastava AK, Wu QS, Kuča K (2021b) Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. Front Plant Sci 11:2046. https://doi.org/10.3389/fpls.2020.600792 Riaz M, Kamran M, Fang Y, Wang Q, Wang DL (2021) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. J Hazard Mater 402: 123919. http://doi.org/10.1016/j.jhazmat.2020.123919 Cheng HQ, Zou YN, Kuča K, Hashem A, Abd_Ahhah EF, Wu QS (2021) Elucidating the mechanisms underlying enhanced drought tolerance in plants mediated by arbuscular mycorrhizal fungi. Front Microbiol 12:809473. http://doi.org/10.3389/fmicb.2021.809473 Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotox Environ Saf 126: 245-255. http://doi.org/10.1016/j.ecoenv.2015.12.026 Wu QS, Zou YN, Zhan TT, Liu CY (2010) Polyamines participate in mycorrhizal and root development of citrus (Citrus tangerine) seedlings. Not Bot Hort Agrobot Cluj, 38:25-31.