Statistical properties and multifractality of Bitcoin

Tetsuya Takaishi1
1Hiroshima University of Economics, Hiroshima 731-0192, Japan

Tài liệu tham khảo

N. Satoshi, Bitcoin: A peer-to-peer electronic cash system, https://bitcoin.org/bitcoin.pdf. R3, https://www.r3com/. Hyperledger, https://www.hyperledger.org/. Dyhrberg, 2016, Bitcoin, gold and the dollar–A GARCH volatility analysis, Finance Res. Lett., 16, 85, 10.1016/j.frl.2015.10.008 P. Katsiampa, Volatility estimation for bitcoin: A comparison of GARCH models, Econ. Lett. Bariviera, 2017, Some stylized facts of the bitcoin market, Physica A, 484, 82, 10.1016/j.physa.2017.04.159 Chu, 2015, Statistical analysis of the exchange rate of bitcoin, PLoS One, 10, e0133678, 10.1371/journal.pone.0133678 Urquhart, 2016, The inefficiency of bitcoin, Econ. Lett., 148, 80, 10.1016/j.econlet.2016.09.019 Nadarajah, 2017, On the inefficiency of bitcoin, Econom. Lett., 150, 6, 10.1016/j.econlet.2016.10.033 Dyhrberg, 2016, Hedging capabilities of bitcoin. Is it the virtual gold?, Finance Res. Lett., 16, 139, 10.1016/j.frl.2015.10.025 Bouri, 2017, On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?, Finance Res. Lett., 20, 192, 10.1016/j.frl.2016.09.025 Cheah, 2015, Speculative bubbles in bitcoin markets? An empirical investigation into the fundamental value of bitcoin, Econom. Lett., 130, 32, 10.1016/j.econlet.2015.02.029 Kristoufek, 2013, Bitcoin meets google trends and wikipedia: Quantifying the relationship between phenomena of the internet era, Sci. Rep., 3, 3415, 10.1038/srep03415 Peng, 1994, Mosaic organization of DNA nucleotides, Phys. Rev. E, 49, 1685, 10.1103/PhysRevE.49.1685 Kantelhardt, 2002, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A, 316, 87, 10.1016/S0378-4371(02)01383-3 Matia, 2003, Multifractal properties of price fluctuations of stocks and commodities, Europhys. Lett., 61, 422, 10.1209/epl/i2003-00194-y Kwapień, 2005, Components of multifractality in high-frequency stock returns, Physica A, 350, 466, 10.1016/j.physa.2004.11.019 Lee, 2006, Multifractal behavior of the Korean stock-market index KOSPI, Physica A, 364, 355, 10.1016/j.physa.2005.08.082 Kumar, 2009, Multifractal properties of the Indian financial market, Physica A, 388, 1593, 10.1016/j.physa.2008.12.017 Zunino, 2009, Multifractal structure in Latin-American market indices, Chaos Solitons Fractals, 41, 2331, 10.1016/j.chaos.2008.09.013 Suárez-García, 2014, Multifractality and long memory of a financial index, Physica A, 394, 226, 10.1016/j.physa.2013.09.038 Hasan, 2015, Multifractal analysis of asian markets during 2007–2008 financial crisis, Physica A, 419, 746, 10.1016/j.physa.2014.10.030 Lahmiri, 2017, Multifractal analysis of Moroccan family business stock returns, Physica A, 486, 183, 10.1016/j.physa.2017.05.048 Gu, 2010, Multifractal analysis on international crude oil markets based on the multifractal detrended fluctuation analysis, Physica A, 389, 2805, 10.1016/j.physa.2010.03.003 Li, 2011, Multifractal analysis of China’s agricultural commodity futures markets, Energy Proc., 5, 1920, 10.1016/j.egypro.2011.03.330 Mali, 2014, Multifractal characterization of gold market: a multifractal detrended fluctuation analysis, Physica A, 413, 361, 10.1016/j.physa.2014.06.076 Delbianco, 2016, Multifractal behavior of commodity markets: Fuel versus non-fuel products, Physica A, 457, 573, 10.1016/j.physa.2016.03.096 Zheng, 2016, Multifractal analysis of spot rates in tanker markets and their comparisons with crude oil markets, Physica A, 444, 547, 10.1016/j.physa.2015.10.061 Lim, 2007, Multifractal detrended fluctuation analysis of derivative and spot markets, Physica A, 386, 259, 10.1016/j.physa.2007.07.055 Norouzzadeh, 2006, A multifractal detrended fluctuation description of Iranian rial–US dollar exchange rate, Physica A, 367, 328, 10.1016/j.physa.2005.11.019 Oh, 2012, A multifractal analysis of Asian foreign exchange markets, Eur. Phys. J. B, 85, 214, 10.1140/epjb/e2012-20570-0 Wang, 2012, Statistical properties of the yuan exchange rate index, Physica A, 391, 3503, 10.1016/j.physa.2012.01.054 Qin, 2015, The effectiveness of China’s RMB exchange rate reforms: An insight from multifractal detrended fluctuation analysis, Physica A, 421, 443, 10.1016/j.physa.2014.11.053 Caraiani, 2015, Evidence of multifractality from CEE exchange rates against Euro, Physica A, 419, 395, 10.1016/j.physa.2014.06.043 Norouzzadeh, 2007, Anti-correlation and multifractal features of Spain electricity spot market, Physica A, 380, 333, 10.1016/j.physa.2007.02.087 Zunino, 2008, A multifractal approach for stock market inefficiency, Physica A, 387, 6558, 10.1016/j.physa.2008.08.028 Wang, 2011, Analysis of the efficiency and multifractality of gold markets based on multifractal detrended fluctuation analysis, Physica A, 390, 817, 10.1016/j.physa.2010.11.002 Tiwari, 2017, A multifractal detrended fluctuation analysis of financial market efficiency: Comparison using Dow Jones sector ETF indices, Physica A, 483, 182, 10.1016/j.physa.2017.05.007 Mensi, 2017, Global financial crisis and weak-form efficiency of Islamic sectoral stock markets: An MF-DFA analysis, Physica A, 471, 135, 10.1016/j.physa.2016.12.034 Fama, 1970, Efficient capital markets: A review of theory and empirical work, J. Finance, 25, 383, 10.2307/2325486 Cont, 2001, Empirical properties of asset returns: Stylized facts and statistical issues, Quant. Finance, 1, 223, 10.1080/713665670 CoinDesk, http://www.coindesk.com/. Voit, 2003, From brownian motion to operational risk: Statistical physics and financial markets, Physica A, 321, 286, 10.1016/S0378-4371(02)01783-1 Bouri, 2017, On the return-volatility relationship in the bitcoin market around the price crash of 2013, Economics: The Open-Access, Open-Assessment E-J., 11, 1, 10.5018/economics-ejournal.ja.2017-2 Bollerslev, 1986, Generalized autoregressive conditional heteroskedasticity, J. Econometrics, 31, 307, 10.1016/0304-4076(86)90063-1 Glosten, 1993, On the relation between the expected value and the volatility of the nominal excess on stocks, J. Finance, 48, 1779, 10.1111/j.1540-6261.1993.tb05128.x Takaishi, 2017, Rational GARCH model: An empirical test for stock returns, Physica A, 473, 451, 10.1016/j.physa.2017.01.011 Takaishi, 2009, An adaptive Markov chain Monte Carlo method for GARCH model, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Complex Sci., 5, 1424 Takaishi, 2009, Bayesian estimation of GARCH model with an adaptive proposal density, New Adv. Intell. Decis. Technol. Stud. Comput. Intell., 199, 635, 10.1007/978-3-642-00909-9_61 Takaishi, 2010, Bayesian inference with an adaptive proposal density for GARCH models, J. Phys. Conf. Ser., 221, 10.1088/1742-6596/221/1/012011 Spiegelhalter, 2002, Bayesian measures of model complexity and fit (with discussion), J. R. Stat. Soc. Ser. B Stat. Methodol., 64, 583, 10.1111/1467-9868.00353 Theiler, 1992, Testing for nonlinearity in time series: the method of surrogate data, Physica D, 58, 77, 10.1016/0167-2789(92)90102-S Forexite, https://www.forexite.com/. Lahmiri, 2018, Chaos, randomness and multi-fractality in bitcoin market, Chaos Solitons Fractals, 106, 28, 10.1016/j.chaos.2017.11.005