Understanding structural/functional properties of amidase from Rhodococcus erythropolis by computational approaches

Journal of Molecular Modeling - Tập 15 - Trang 481-487 - 2008
Wei-Wei Han1,2, Ying Wang1, Yi-Han Zhou1, Yuan Yao1, Ze-Sheng Li1, Yan Feng2
1Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun, People’s Republic of China
2The Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, People’s Republic of China

Tóm tắt

The 3D structure of the amidase from Rhodococcus erythropolis (EC 3.5.1.4) built by homology-based modeling is presented. Propionamide and acetamide are docked to the amidase. The reaction models were used to characterize the explicit enzymatic reaction. The calculated free energy barrier at B3LYP/6-31G* level of Model A (Ser194 + propionamide) is 19.72 kcal mol−1 in gas (6.47 kcal mol−1 in solution), and of Model B (Ser194 + Gly193 + propionamide) is 18.71 kcal mol−1 in gas (4.57 kcal mol−1 in solution). The docking results reveal that propionamide binds more strongly than acetamide due to the ethyl moiety of propionamide, which makes the carboxyl oxygen center of the substrate slightly more negative, making formation of the positively charged tetrahedral intermediate slightly easier. The quantum mechanics results demonstrate that Ser194 is essential for the acyl-intermediate, and Gly193 plays a secondary role in stabilizing acyl-intermediate formation as the NH groups of Ser194 and Gly193 form hydrogen bonds with the carbonyl oxygen of propionamide. The new structural and mechanistic insights gained from this computational study should be useful in elucidating the detailed structures and mechanisms of amidase and other homologous members of the amidase signature family.

Tài liệu tham khảo

Hashimoto Y, Nishiyama M, Ikehata O, Horinouchi S, Beppu T (1990) Biochim Biophys Acta 1088:225–233 Mayaux JF, Cerbelaud E, Soubrier F, Faucher D, Petre D (1990) J Bacteriol 172:6764–6773 Skouloubris S, Labigne AH, Reuse HD (2001) Mol Microbiol 40:596–609, doi:10.1046/j.1365-2958.2001.02400.x Vliet AHMV, Stoof J, Poppelaars SW, Bereswill S, Homuth G, Kist M et al (2003) J Biol Chem 278:9052–9057, doi:10.1074/jbc.M207542200 Patricelli MP, Cravatt BF (2000) J Biol Chem 275:19177–19184, doi:10.1074/jbc.M001607200 Shin S, Yun SY, Koo HM, Kim YS, Choi KY, Oh BH (2003) J Biol Chem 278:24937–24943, doi:10.1074/jbc.M302156200 Shin S, Lee TH, Ha NC, Koo HMS, Kim Y, Lee H-S et al (2002) EMBO J 21:2509–2516, doi:10.1093/emboj/21.11.2509 Labahn J, Neumann S, Buldt G, Kula MR, Granzin J (2002) J Mol Biol 322:1053–1106, doi:10.1016/S0022-2836(02)00886-0 Nakamura A, Yao M, Chimnaronk S, Sakai N, Tanaka I (2006) Science 312:1954–1968, doi:10.1126/science.1127156 Altschul SF, Madden TL, Schäfer AA, Zhang JZ, Miller DJ (1997) Nucleic Acids Res 25:3389–3402, doi:10.1093/nar/25.17.3389 Montgomerie S, Cruz JA, Shrivastava S, Arndt D, Berjanskii M, Wishart DS (2008) Nucleic Acids Res 36:W202–W209 Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9, University of California, San Francisco Jorgensen MJ, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935, doi:10.1063/1.445869 Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092, doi:10.1063/1.464397 Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341, doi:10.1016/0021-9991(77)90098-5 Luthy RA, MacArthur MW, Moss S, Thornton JM (1993) J Appl Cryst 26:283–291, doi:10.1107/S0021889892009944 Huey H, Morris GM, Olson AJ, Goodsell DH (2007) J Comput Chem 28:1145–1152, doi:10.1002/jcc.20634 Kravitz JY, Pecoraro V, Carlson HA (2005) J Chem Theory Comput 1:1265–1274, doi:10.1021/ct050132o Velichkova P, Himo F (2005) J Phys Chem B 109:8216–8219, doi:10.1021/jp0443254 Wang JY, Dong H, Li SH, He HW (2005) J Phys Chem B 109:18644–18672 Li A-J, Nussinov R (1998) Proteins 32:111–127, doi:10.1002/(SICI)1097-0134(19980701)32:1<111::AID-PROT12>3.0.CO;2-H Pham TC, Kriwacki RW, Parrill AL (2007) Biopolymers 86:298–310, doi:10.1002/bip.20745 Claiborne A, Yeh JI, Mallett TC, Luba J, Crane EJ, Charrier V et al (1999) Biochemistry 38:15407–15416, doi:10.1021/bi992025k Warshel A, Naray-Szabo G, Sussman F, Hwang J-K (1989) Biochemistry 28:3629–3637, doi:10.1021/bi00435a001