Microbial sulfidogenesis in ferrihydrite-rich environments: Effects on iron mineralogy and arsenic mobility
Tài liệu tham khảo
Amstaetter, 2010, Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH), Environ. Sci. Technol., 44, 102, 10.1021/es901274s
1998
ASRP (2007) Average v 2.0 for windows. Australian Synchrotron Research Program.
Balch, 1979, Methanogens: re-evaluation of a unique biological group, Microbiol. Rev., 43, 260, 10.1128/MR.43.2.260-296.1979
Benning, 2000, Reaction pathways in the Fe–S system below 100°C, Chem. Geol., 167, 25, 10.1016/S0009-2541(99)00198-9
Bethke, 2007
Bostick, 2003, Arsenite sorption on troilite (FeS) and pyrite (FeS2), Geochim. Cosmochim. Acta, 67, 909, 10.1016/S0016-7037(02)01170-5
Bostick, 2004, Arsenite retention mechanisms within estuarine sediments of pescadero, CA, Environ. Sci. Technol., 38, 3299, 10.1021/es035006d
Burton, 2006, Elemental sulfur in drain sediments associated with acid sulfate soils, Appl. Geochem., 21, 1240, 10.1016/j.apgeochem.2006.02.020
Burton, 2007, Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands, Geochim. Cosmochim. Acta, 71, 4456, 10.1016/j.gca.2007.07.007
Burton, 2008, Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich acid-sulfate soil, Chem. Geol., 253, 64, 10.1016/j.chemgeo.2008.04.006
Burton, 2008, A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils, Appl. Geochem., 23, 2759, 10.1016/j.apgeochem.2008.07.007
Burton, 2008, Schwertmannite transformation to goethite via the Fe(II) pathway: reaction rates and implications for iron–sulfide formation, Geochim. Cosmochim. Acta, 72, 4551, 10.1016/j.gca.2008.06.019
Burton, 2009, Iron-monosulfide oxidation in natural sediments: resolving microbially-mediated S transformations using XANES, electron microscopy and selective extractions, Environ. Sci. Technol., 43, 3128, 10.1021/es8036548
Burton, 2010, Arsenic effects and behaviour in association with the Fe(II)-catalysed transformation of schwertmannite, Environ. Sci. Technol., 44, 1968, 10.1021/es903424h
Burton E.D., Bush R. T., Johnston S. G., Sullivan L. A. and Keene A. F. (2011) Sulfur biogeochemical cycling and novel Fe-S mineralization pathways in a tidally re-flooded wetland. Geochim. Cosmochim. Acta. doi:10.1016/j.gca.2011.03.020.
Canfield, 2005, The sulfur cycle
Claff, 2010, A sequential extraction procedure for acid-sulfate soils: partitioning of iron, Geoderma, 155, 224, 10.1016/j.geoderma.2009.12.002
Dixit, 2003, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility, Environ. Sci. Technol., 37, 4182, 10.1021/es030309t
Dos Santos, 1992, The reductive dissolution of iron(III) (hydr)oxides by hydrogen sulfide, Langmuir, 8, 1671, 10.1021/la00042a030
Eary, 1992, The solubility of amorphous As2S3 from 25 to 90°C, Geochim. Cosmochim. Acta, 56, 2267, 10.1016/0016-7037(92)90188-O
Farquhar, 2002, Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study, Environ. Sci. Technol., 36, 1757, 10.1021/es010216g
Gallegos, 2007, Spectroscopic investigation of the uptake of arsenite from solution by synthetic mackinawite, Environ. Sci. Technol., 41, 7781, 10.1021/es070613c
Han, 2011, FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers, Water Res., 45, 593, 10.1016/j.watres.2010.09.033
Hansel, 2004, Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II), Geochim. Cosmochim. Acta, 68, 3217, 10.1016/j.gca.2003.10.041
Hellige, 2009, Transformation of iron(oxyhydr)oxides in the presence of dissolved sulphide, Geochim. Cosmochim. Acta, 73, A518
Helz, 2008, Thermodynamic model for arsenic speciation in sulfidic waters: a novel use of ab initio computations, Geochim. Cosmochim. Acta, 72, 4457, 10.1016/j.gca.2008.06.018
Johnston, 2010, Arsenic mobilisation in a seawater inundated acid sulfate soil, Environ. Sci. Technol., 44, 2016, 10.1021/es903114z
Johnston, 2011, Iron and arsenic cycling in intertidal surface sediments during wetland remediation, Environ. Sci. Technol., 45, 2179, 10.1021/es103403n
Johnston, 2011, Iron geochemical zonation in a tidally inundated acid-sulfate soil wetland, Chem. Geol., 280, 257, 10.1016/j.chemgeo.2010.11.014
Keene, 2011, Effects of hyper-enriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland, Biogeochemistry, 103, 263, 10.1007/s10533-010-9461-2
Keimowitz, 2007, Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy, Environ. Sci. Technol., 41, 6718, 10.1021/es061957q
Kirk, 2004, Bacterial sulfate reduction limits natural arsenic contamination in groundwater, Geology, 32, 953, 10.1130/G20842.1
Kirk, 2010, Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors, Geochim. Cosmochim. Acta, 74, 2538, 10.1016/j.gca.2010.02.002
Kocar, 2010, Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite, Geochim. Cosmochim. Acta, 74, 980, 10.1016/j.gca.2009.10.023
Nordstrom, 2003, Arsenic thermodynamic data and environmental geochemistry, 1
O’Day, 2004, The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions, Proc. Natl. Acad. Sci. USA, 38, 13703, 10.1073/pnas.0402775101
Pedersen, 2006, Release of arsenic associated with the reduction and transformation of iron oxides, Geochim. Cosmochim. Acta, 70, 4116, 10.1016/j.gca.2006.06.1370
Peiffer, 1992, Kinetics and mechanism of the reaction of H2S with lepidocrocite, Environ. Sci. Technol., 26, 2408, 10.1021/es00036a011
Peine, 2000, Electron flow in an iron-rich acidic sediment – evidence for an acidity-driven iron cycle, Limnol. Oceanogr., 45, 1077, 10.4319/lo.2000.45.5.1077
Poulton, 2004, A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide, Geochim. Cosmochim. Acta, 68, 3703, 10.1016/j.gca.2004.03.012
Ravel, 2005, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat., 12, 537, 10.1107/S0909049505012719
Raven, 1998, Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes, Environ. Sci. Technol., 32, 344, 10.1021/es970421p
Rickard, 1974, Kinetics and mechanism of the sulphidation of goethite, Am. J. Sci., 274, 941, 10.2475/ajs.274.8.941
Rickard, 2007, Chemistry of iron sulfides, Chem. Rev., 102, 514, 10.1021/cr0503658
Root, 2009, Speciation and natural attenuation of arsenic and iron in a tidally influenced shallow aquifer, Geochim. Cosmochim. Acta, 73, 5528, 10.1016/j.gca.2009.06.025
Saalfield, 2010, Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems, Environ. Sci. Technol., 43, 8787, 10.1021/es901651k
Smedley, 2002, A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem., 17, 517, 10.1016/S0883-2927(02)00018-5
Smieja, 2003, Preservation of sulfidic waters containing dissolved As(III), J. Environ. Monit., 5, 913, 10.1039/b306567g
Sumoondur, 2008, Green rust as a precursor for magnetite: an in situ synchrotron based study, Mineral. Mag., 72, 201, 10.1180/minmag.2008.072.1.201
Webster, 1990, The solubility of As2S3 and speciation of As in dilute and sulfide-bearing fluids at 25°C and 90°C, Geochim. Cosmochim. Acta, 54, 1009, 10.1016/0016-7037(90)90434-M
Wilkin R. T. (2001) Iron sulfide–arsenite interactions: adsorption behaviour onto iron monosulfides and controls on arsenic accumulation in pyrite. USGS Workshop on Arsenic in the Environment, Denver.
Wilkin, 1996, Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species, Geochim. Cosmochim. Acta, 60, 4167, 10.1016/S0016-7037(97)81466-4
Wilkin, 2006, Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland, Chem. Geol., 228, 156, 10.1016/j.chemgeo.2005.11.022
Wolthers, 2005, Arsenic mobility in the ambient sulfidic environment: sorption of arsenic(V) and arsenic(III) onto disordered mackinawite, Geochim. Cosmochim. Acta, 69, 3483, 10.1016/j.gca.2005.03.003
Wolthers, 2007, Influence of arsenic on iron sulfide transformations, Chem. Geol., 236, 217, 10.1016/j.chemgeo.2006.09.010
Yang, 2010, Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic conditions, Environ. Sci. Technol., 44, 5469, 10.1021/es1007565
Yee, 2006, The rate of ferrihydrite transformation to goethite via the Fe(II) pathway, Am. Mineral., 91, 92, 10.2138/am.2006.1860