Relative contribution of Na + /K + homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton ( Gossypium hirsutum L.) cultivars

Plant Physiology and Biochemistry - Tập 119 - Trang 121-131 - 2017
Ning Wang1, Wenqing Qiao1, Xiaohong Liu2, Jianbin Shi1, Qinghua Xu1, Hong Zhou1, Gentu Yan1, Qun Huang1
1State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, PR China
2Scientific Research Department, Xinjiang Qianhai Seeds Co., Ltd., Tumushuke, 843900, PR China

Tài liệu tham khảo

Acosta-Motos, 2015, NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants, J. Plant Physiol., 183, 41, 10.1016/j.jplph.2015.05.005 Apel, 2004, Reactive oxygen species: metabolism oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 55, 373, 10.1146/annurev.arplant.55.031903.141701 Bose, 2014, Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+- permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley, Plant Cell Environ., 237, 589, 10.1111/pce.12180 Brisson, 1998, Manipulation of catalase levels produces altered photosynthesis in transgenic tobacco plants, Plant Physiol., 116, 259, 10.1104/pp.116.1.259 Chaitanya, 1994, Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn, New Phytol., 126, 623, 10.1111/j.1469-8137.1994.tb02957.x Chakraborty, 2016, Differential fine-regulation of enzyme driven ROS detoxification network imparts salt tolerance in contrasting peanut genotypes, Environ. Exp. Bot., 128, 79, 10.1016/j.envexpbot.2016.05.001 Chen, 2013, Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from yellow river delta, China: photosynthesis, osmotic regulation, ion flux and antioxidant capacity, PLoS One, 8, 1 Duan, 2015, The inward-rectifying K+ channel SsAKT1 is a candidate involved in K+ uptake in the halophyte Suaeda salsa under saline condition, Plant Soil, 395, 173, 10.1007/s11104-015-2539-9 Duarte, 2013, Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PSII photochemistry and anti-oxidant feedback-implications for resilience in climate change, Plant Physiol. Bioch., 67, 178, 10.1016/j.plaphy.2013.03.004 Fan, 2011, Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: comparative proteomic analysis on chloroplast proteins, Proteomics, 11, 4346, 10.1002/pmic.201100054 Gill, 2010, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Bioch., 48, 909, 10.1016/j.plaphy.2010.08.016 He, 2015, Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean, J. Exp. Bot., 66, 6877, 10.1093/jxb/erv392 Kong, 2016, H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity, J. Exp. Bot., 67, 2247, 10.1093/jxb/erw026 Lee, 2007, Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts, Plant Cell Rep., 26, 591, 10.1007/s00299-006-0253-z Lefèvre, 1998, Evaluation of lipid peroxidation by measuring thiobarbituric acid reactive substances, Ann. Biol. Clin. Paris., 56, 305 Leidi, 1997, Is salinity tolerance related to Na+ accumulation in upland cotton (Gossypium hirsutum) seedlings?, Plant Soil, 190, 67, 10.1023/A:1004214825946 Lima-Neto, 2014, Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas, J. Plant Physiol., 171, 23, 10.1016/j.jplph.2013.09.002 Livak, 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method, Methods, 25, 402, 10.1006/meth.2001.1262 Ma, 2014, ZxSOS1 is essential for long-distance transport and spatial distribution of Na+ and K+ in the xerophyte Zygophyllum xanthoxylum, Plant Soil, 374, 661, 10.1007/s11104-013-1891-x Maxwell, 2000, Chlorophyll fluorescence-a practical guide, J. Exp. Bot., 51, 659, 10.1093/jexbot/51.345.659 Munns, 2008, Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 59, 651, 10.1146/annurev.arplant.59.032607.092911 Nayyar, 2005, Chilling stressed chickpea seedlings: effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage, Environ. Exp. Bot., 54, 275, 10.1016/j.envexpbot.2004.09.007 Nieves-Cordones, 2008, A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5, Plant Mol. Biol., 68, 521, 10.1007/s11103-008-9388-3 Parida, 2004, Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes, J. Plant Physiol., 161, 531, 10.1078/0176-1617-01084 Peng, 2016, Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings, Sci. Rep., 6, 34548, 10.1038/srep34548 Rao, 1997, Influence of salicylic acid on H2O2 production: oxidative stress and H2O2 metabolizing enzymes, Plant Physiol., 115, 137, 10.1104/pp.115.1.137 Rubio, 2010, Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediate K+ uptake, Physiol. Plant, 139, 220, 10.1111/j.1399-3054.2010.01354.x Sanadhya, 2015, Ion homeostasis in a salt-secreting halophytic grass, AoB Plants, 7, 10.1093/aobpla/plv055 Shabala, 2014, Salt bladders: do they matter?, Trends Plant Sci., 19, 687, 10.1016/j.tplants.2014.09.001 Shabala, 2008, Potassium transport and plant salt tolerance, Physiol. Plant, 133, 651, 10.1111/j.1399-3054.2007.01008.x Sperdouli, 2014, A better energy allocation of absorbed light in photosystem II and less photooxidative damage contribute to acclimation of Arabidopsis thaliana young leaves to water deficit, J. Plant Physiol., 171, 587, 10.1016/j.jplph.2013.11.014 Takahashi, 2011, Photoprotection in plants: a new light on photosystem II damage, Trends Plant Sci., 16, 53, 10.1016/j.tplants.2010.10.001 Walia, 2005, Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage, Plant Physiol., 139, 822, 10.1104/pp.105.065961 Wang, 2012, Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum), J. Photoch. Photobiol. B, 110, 1, 10.1016/j.jphotobiol.2012.02.002 Wang, 2016, Genotypic variations in ion homeostasis, photochemical efficiency and antioxidant capacity adjustment to salinity in cotton (Gossypium hirsutum L.), Soil Sci. Plant Nutr., 62, 240, 10.1080/00380768.2016.1172022 Wang, 2017, Cotton (Gossypium hirsutum L.) genotypes with contrasting K+/Na+ ion homeostasis: implications for salinity tolerance, Acta Physiol. Plant, 39, 77, 10.1007/s11738-017-2381-1 Wang, 2002, Selectivity of various types of salt-resistant plants for K+ over Na+, J. Arid. Environ., 52, 457, 10.1006/jare.2002.1015 Zhang, 2014, Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity, PLoS One, 9, 1 Zhang, 2017, SOS1, HKT1;5, and NHX1 synergistically modulate NaCl homeostasis in the halophytic grass Puccinellia tenuiflora, Front. Plant Sci., 8, 576