The Lang–Trotter conjecture for products of non-CM elliptic curves

The Ramanujan Journal - Tập 59 - Trang 379-436 - 2022
Hao Chen1, Nathan Jones2, Vlad Serban3
1Microsoft Research, Redmond, WA, USA
2University of Illinois at Chicago, Chicago, USA
3École Polytechnique Fédérale de Lausanne, Lausanne, VD, Switzerland

Tóm tắt

Inspired by the work of Lang–Trotter on the densities of primes with fixed Frobenius traces for elliptic curves defined over $${\mathbb {Q}}$$ and by the subsequent generalization of Cojocaru–Davis–Silverberg–Stange to generic abelian varieties, we study the analogous question for abelian surfaces isogenous to products of non-CM elliptic curves over $${\mathbb {Q}}$$ that are not $${\overline{{\mathbb {Q}}}}$$ -isogenous. We formulate the corresponding conjectural asymptotic, provide upper bounds, and explicitly compute (when the elliptic curves lie outside a thin set) the arithmetically significant constants appearing in the asymptotic. This allows us to provide computational evidence for the conjecture.

Tài liệu tham khảo

Akbary, A., Parks, J.: On the Lang-Trotter conjecture for two elliptic curves. Ramanujan J. 49(3), 585–623 (2019). https://doi.org/10.1007/s11139-018-0050-7 Baier, S., Patankar, V.M.: Applications of the square sieve to a conjecture of Lang and Trotter for a pair of elliptic curves over the rationals. In: Geometry, Algebra, Number Theory, and Their Information Technology Applications. vol. 251. Springer Proc. Math. Stat. Springer, Cham, pp. 39–57 (2018). https://doi.org/10.1007/978-3-319-97379-1_3 Baier, S., Jones, N.: A refined version of the Lang-Trotter conjecture. Int. Math. Res. Not. 2009 (2008). https://doi.org/10.1093/imrn/rnn136 Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24.3-4 (1997). Computational Algebra and Number Theory (London, 1993), pp. 235–265. https://doi.org/10.1006/jsco.1996.0125 Cojocaru, A.C., Davis, R., Silverberg, A., Stange, K.E.: Arithmetic properties of the Frobenius traces defined by a rational abelian variety (with two appendices by J-P. Serre). Int. Math. Res. Not. IMRN 12, 3557–3602 (2017). https://doi.org/10.1093/imrn/rnw058 Cojocaru, A.-C., Grant, D., Jones, N.: One-parameter families of elliptic curves over Q with maximal Galois representations. Proc. Lond. Math. Soc. 103(4), 654–675 (2011). https://doi.org/10.1112/plms/pdr001 Cojocaru, A.C., Jones, N., Serban, V., Wang, T.: Bounds for distributions of Frobenius traces on abelian varieties with small Sato-Tate group (in preparation) Daniels, H.B.: An infinite family of Serre curves. J. Number Theory 155, 226–247 (2015). https://doi.org/10.1016/j.jnt.2015.03.016 Daniels, H.B., Hatley, J., Ricci, J.: Elliptic curves with maximally disjoint division fields. Acta Arith. 175(3), 211–223 (2016) David, C., Pappalardi, F.: Average Frobenius distributions of elliptic curves. Int. Math. Res. Not. 4, 165–183 (1999). https://doi.org/10.1155/S1073792899000082 Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, 197–272 (1941). https://doi.org/10.1007/BF02940746 Fité, F., Kedlaya, K.S., Rotger, V., Sutherland, A.V.: Sato-Tate distributions and Galois endomorphism modules in genus 2. Compos. Math. 148(5), 1390–1442 (2012). https://doi.org/10.1112/S0010437X12000279 Fouvry, E., Murty, M.R.: On the distribution of supersingular primes. Can. J. Math. 48(1), 81–104 (1996). https://doi.org/10.4153/CJM-1996-004-7 Harris, M.: Potential automorphy of odd-dimensional symmetric powers of elliptic curves and applications. In: Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin, vol. II. vol. 270. Progr. Math. Birkhäuser Boston, Inc., Boston, pp. 1–21 (2009). https://doi.org/10.1007/978-0-8176-4747-6_1 Jones, N.: Averages of elliptic curve constants. Math. Ann. 345(3), 685–710 (2009). https://doi.org/10.1007/s00208-009-0373-1 Jones, N.: Almost all elliptic curves are Serre curves. Trans. Am. Math. Soc. 362(3), 1547–1570 (2010). https://doi.org/10.1090/S0002-9947-09-04804-1 Jones, N.: Pairs of elliptic curves with maximal Galois representations. J. Number Theory 133(10), 3381–3393 (2013). https://doi.org/10.1016/j.jnt.2013.03.002 Katz, N.M.: Lang-Trotter revisited. Bull. Am. Math. Soc. 46(3), 413–457 (2009). https://doi.org/10.1090/S0273-0979-09-01257-9 Lagarias, J.C., Odlyzko, A.M.: Effective versions of the Chebotarev density theorem. In: Algebraic Number Fields: L-Functions and Galois Properties (Proc. Sympos., Univ. Durham, Durham, 1975), pp. 409–464 (1977) Lang, S., Trotter, H.: Frobenius Distributions in GL2-Extensions. Lecture Notes in Mathematics, vol. 504. Springer, Berlin (1976) Murty, V.K.: Frobenius distributions and Galois representations. In: Automorphic Forms, Automorphic Representations, and Arithmetic (Fort Worth, TX, 1996), vol. 66. Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, pp. 193–211 (1999) Oesterlé, J.: Réduction modulo \(p^{n}\) des sous-ensembles analytiques fermés de \(\mathbf{Z}^{N}_{p}\). Invent. Math. 66(2), 325–341 (1982). https://doi.org/10.1007/BF01389398 Ribet, K.: On \(\ell \)-adic representations attached to modular forms. Invent. Math. 28, 245–275 (1975). https://doi.org/10.1007/bf01425561 Rubin, K., Silverberg, A.: Mod 2 representations of elliptic curves. Proc. Am. Math. Soc. 129, 53 (1999). https://doi.org/10.2307/2669028 Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4), 259–331 (1972) Serre, J.-P.: Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Etudes Sci. Publ. Math. 54, 323–401 (1981) Silverberg, A.: Explicit families of elliptic curves with prescribed mod N representations. In: Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995), pp. 447–461. Springer, New York (1997) The LMFDB Collaboration. The L-Functions and Modular Forms Database (2013). http://www.lmfdb.org. Accessed 16 Sept 2013 The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0) (2020). https://www.sagemath.org