Predicting fish species richness in estuaries: Which modelling technique to use?

Environmental Modelling & Software - Tập 66 - Trang 17-26 - 2015
Susana França1, Henrique N. Cabral1,2
1MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
2Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

Tài liệu tham khảo

Aertsen, 2010, Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests, Ecol. Model., 221, 1119, 10.1016/j.ecolmodel.2010.01.007 Araújo, 2006, Five (or so) challenges for species distribution modelling, J. Biogeogr., 33, 1677, 10.1111/j.1365-2699.2006.01584.x Araújo, 2006, Ensemble forecasting of species distribution, Trend Ecol. Evol., 22, 42, 10.1016/j.tree.2006.09.010 Austin, 1999, A silent clash of paradigms: some inconsistencies in community ecology, Oikos, 86, 170, 10.2307/3546582 Austin, 2002, Spatial prediction of species distribution: an interface between ecological theory and statistical modelling, Ecol. Model., 157, 101, 10.1016/S0304-3800(02)00205-3 Austin, 2007, Species distribution models and ecological theory: a critical assessment and some possible new approaches, Ecol. Model., 200, 1, 10.1016/j.ecolmodel.2006.07.005 Bahn, 2012, Testing the predictive performance of distribution models, Oikos, 122, 321, 10.1111/j.1600-0706.2012.00299.x Bennett, 2013, Characterising performance of environmental models, Environ. Model. Softw., 40, 1, 10.1016/j.envsoft.2012.09.011 Breiman, 1984 Breiman, 2001, Statistical modeling: the two cultures, Stat. Sci., 16, 199, 10.1214/ss/1009213726 Burnham, 2002, vol. XXVI, 488 Chatfield, 1995, Model uncertainty, data mining and statistical inference, J. R. Stat. Soc. Ser. A, 158, 419, 10.2307/2983440 De'ath, 2007, Boosted trees for ecological modelling and prediction, Ecology, 88, 243, 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 De'ath, 2000, Classification and regression trees: a powerful yet simple technique for the analysis of complex ecological data, Ecology, 81, 3178, 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 Dormann, 2007, Methods to account for spatial autocorrelation in the analysis of species distributional data: a review, Ecography, 5, 609, 10.1111/j.2007.0906-7590.05171.x Eastwood, 2003, Estimating limits to the spatial extent and suitability of sole (Solea solea) nursery grounds in the Dover Strait, J. Sea Res., 50, 151 Elith, 2006, Novel methods improve prediction of species' distributions from occurrence data, Ecography, 29, 129, 10.1111/j.2006.0906-7590.04596.x Elith, 2008, A working guide to boosted regression trees, J. Anim. Ecol., 77, 802, 10.1111/j.1365-2656.2008.01390.x Fielding, 1995, Testing the generality of bird-habitat models, Conserv. Biol., 9, 1466, 10.1046/j.1523-1739.1995.09061466.x França, 2009, Assessing habitat specific fish assemblages in estuaries along the Portuguese coast, Estuar. Coast. Shelf Sci., 83, 1, 10.1016/j.ecss.2009.03.013 França, 2011, Inter- and intra-estuarine fish assemblage variability patterns along the Portuguese coast, Estuar. Coast. Shelf Sci., 91, 262, 10.1016/j.ecss.2010.10.035 França, 2012, Predicting fish community properties within estuaries: influence of habitat type and other environmental features, Estuar. Coast. Shelf Sci., 107, 22, 10.1016/j.ecss.2012.04.013 Francis, 2006, Predictive models of small fish presence and abundance of northern New Zealand harbours, Estuar. Coast. Shelf Sci., 64, 419, 10.1016/j.ecss.2005.03.007 Friedman, 2003, Prediction with multiple additive regression trees with application in epidemiology, Stat. Med., 22, 1365, 10.1002/sim.1501 Froeschke, 2011, Spatio-temporal predictive model based on environmental factors for juvenile spotted seatrout in Texas estuaries using boosted regression trees, Fish. Res., 111, 131, 10.1016/j.fishres.2011.07.008 Fukuda, 2013, Habitat prediction and knowledge extraction for spawning European grayling (Thymallus thymallus L.) using a broad range of species distribution models, Environ. Model. Softw., 47, 1, 10.1016/j.envsoft.2013.04.005 Gotelli, 2009, Patterns and causes of species richness: a general simulation model for macroecology, Ecol. Lett., 12, 873, 10.1111/j.1461-0248.2009.01353.x Guisan, 2000, Predictive habitat distribution models in ecology, Ecol. Model., 135, 147, 10.1016/S0304-3800(00)00354-9 Guisan, 2005, Predicting species distribution: offering more than simple habitat models, Ecol. Lett., 8, 993, 10.1111/j.1461-0248.2005.00792.x Hijmans, 2013 Knudby, 2010, New approaches to modelling fish-habitat relationships, Ecol. Model., 221, 503, 10.1016/j.ecolmodel.2009.11.008 Leathwick, 2005, Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish, Freshw. Biol., 50, 2034, 10.1111/j.1365-2427.2005.01448.x Leathwick, 2006, Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees, Mar. Ecol. Prog. Ser., 321, 267, 10.3354/meps321267 Leathwick, 2008, Dispersal, disturbance and the contrasting biogeographies of New Zealand's diadromous and non-diadromous fish species, J. Biogeogr., 35, 1481, 10.1111/j.1365-2699.2008.01887.x Leclere, 2011, A comparison of modelling techniques to predict juvenile 0+ fish species occurrences in a large river system, Ecol. Inform., 6, 276, 10.1016/j.ecoinf.2011.05.001 Legendre, 1998 Le Pape, 2007, Habitat suitability for juvenile common sole (Solea solea, L.) in the Bay of Biscay (France): a quantitative description using indicators based on epibenthic fauna, J. Sea Res., 57, 126 Maggini, 2006, Improving generalized regression analysis for the spatial prediction of forest communities, J. Biogeogr., 33, 1729, 10.1111/j.1365-2699.2006.01465.x Mazerolle, 2013 McCullagh, 1989 McKenney, 2003, Spatial models of site index based on climate and soil properties for two boreal tree species in Ontario, Canada, For. Ecol. Manag., 175, 497, 10.1016/S0378-1127(02)00186-X Meynard, 2007, Predicting species distributions: a critical comparison of the most common statistical models using artificial species, J. Biogeogr., 34, 1455, 10.1111/j.1365-2699.2007.01720.x Meynard, 2012, The effect of a gradual response to the environment on species distribution modeling performance, Ecography, 35, 499, 10.1111/j.1600-0587.2011.07157.x Miller, 2002, Modelling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence, Ecol. Model., 157, 227, 10.1016/S0304-3800(02)00196-5 Moisen, 2002, Comparing five modelling techniques for predicting forest characteristics, Ecol. Model., 157, 209, 10.1016/S0304-3800(02)00197-7 Moisen, 2006, Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models and tree-based methods, Ecol. Model., 217, 48 Murray, 2009, Methods to quantify variable importance: implications for the analysis of noisy ecological data, Ecology, 90, 348, 10.1890/07-1929.1 Nicolas, 2010, Fish under influence: a macroecological analysis of relations between fish species richness and environmental gradients among European tidal estuaries, Estuar. Coast. Shelf Sci., 86, 137, 10.1016/j.ecss.2009.11.006 Olden, 2003, A species-specific approach to modelling biological communities and its potential for conservation, Conserv. Biol., 17, 854, 10.1046/j.1523-1739.2003.01280.x Olden, 2002, A comparison of statistical models for modelling fish species distributions, Freshw. Biol., 47, 1976, 10.1046/j.1365-2427.2002.00945.x Pihl, 2002, Habitat use by fishes in estuaries and other brackish areas Piñeiro, 2008, How to evaluate models: observed vs. predicted or predicted vs. observed?, Ecol. Model., 216, 316, 10.1016/j.ecolmodel.2008.05.006 Pittman, 2009, Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals, J. Coast. Res., 53, 27, 10.2112/SI53-004.1 Potts, 2006, Comparing species abundance models, Ecol. Model., 199, 153, 10.1016/j.ecolmodel.2006.05.025 R Development Core Team, 2008 Ridgeway, 2013 Roche, 1999, Comparison of different models predicting the date of beginning of flowering in pea (Pisum sativum L.), Ecol. Model., 118, 213, 10.1016/S0304-3800(99)00036-8 Segurado, 2004, An evaluation of methods for modelling species distribution, J. Biogeogr., 31, 1555, 10.1111/j.1365-2699.2004.01076.x Therneau, 2012 Vasconcelos, 2007, Assessing anthropogenic pressures on estuarine fish nurseries along the Portuguese coast: a multi-metric index and conceptual approach, Sci. Total Environ., 374, 199, 10.1016/j.scitotenv.2006.12.048 Vasconcelos, 2013, Predicting estuarine use patterns of juvenile fish with generalized linear models, Estuar. Coast. Shelf Sci., 120, 64, 10.1016/j.ecss.2013.01.018 Venables, 2002 Wood, 2000, Modelling and smoothing parameter estimation with multiple quadratic penalties, J. R. Stat. Soc. (B), 62, 413, 10.1111/1467-9868.00240 Wood, 2002, GAMs with integrated model selection using penalized regression splines and applications to environmental modelling, Ecol. Model., 157, 157, 10.1016/S0304-3800(02)00193-X