Archaeal Origins of Eukaryotic Cell and Nucleus
Tài liệu tham khảo
Akıl, 2018, Genomes of Asgard archaea encode profilins that regulate actin, Nature, 562, 439, 10.1038/s41586-018-0548-6
Akıl, 2020, Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from asgard archaea, Proc. Natl. Acad. Sci. U.S.A., 117, 19904, 10.1073/pnas.2009167117
Akıl, 2020, Mythical origins of the actin cytoskeleton, Curr. Opin. Cell Biol., 68, 55, 10.1016/j.ceb.2020.08.011
Alvarado-Kristensson, 2020, Choreography of the centrosome, Heliyon, 6, 10.1016/j.heliyon.2020.e03238
Amos, 2017, Overview of the diverse roles of bacterial and archaeal cytoskeletons, 1
Archibald, 2014
Archibald, 2015, Endosymbiosis and eukaryotic cell evolution, Curr. Biol., 25, R911, 10.1016/j.cub.2015.07.055
Aylett, 2017, The tubulin superfamily in archaea, 393
Azimzadeh, 2014, Exploring the evolutionary history of centrosomes, Phil. Trans. R. Soc. B, 369, 20130453, 10.1098/rstb.2013.0453
Avidor-Reiss, 2019, The role of sperm centrioles in human reproduction – the known and the unknown, Front. Cell Dev. Biol., 7, 188, 10.3389/fcell.2019.00188
Avidor-Reiss, 2020, The sperm centrioles, Mol. Cell. Endocrinol., 518, 110987, 10.1016/j.mce.2020.110987
Baluška, 1997, Nuclear components with microtubule organizing properties in multicellular eukaryotes: functional and evolutionary considerations, Int. Rev. Cytol., 175, 91, 10.1016/S0074-7696(08)62126-9
Baluška, 2004, Eukaryotic cells and their cell bodies: cell theory revisited, Ann. Bot., 94, 9, 10.1093/aob/mch109
Baluška, 2004, Cell bodies in cage, Nature, 428, 371, 10.1038/428371a
Baluška, 2006, Cell-cell channels and their implications for Cell Theory
Baluška, 2012, Strasburger's legacy to mitosis and,cytokinesis and its relevance for the cell theory, Protoplasma, 249, 116, 10.1007/s00709-012-0404-8
Baluška, 2018, Energide-cell body as smallest unit of eukaryotic life, Ann. Bot., 122, 741
Baluška, 2018, Symbiotic origin of eukaryotic nucleus – from cell body to Neo-Energide
Baum, 2015, A comparison of autogenous theories for the origin of eukaryotic cells, Am. J. Bot., 102, 1954, 10.3732/ajb.1500196
Becker, 2020, Microtubule organization in striated muscle cells, Cells, 9, 1395, 10.3390/cells9061395
Bengtson, 2017, Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae, PLoS Biol., 15, 10.1371/journal.pbio.2000735
Bernander, 2011, An archaeal origin for the actin cytoskeleton: implications for eukaryogenesis, Commun. Integr. Biol., 4, 664, 10.4161/cib.16974
Bornens, 2007, Origin and evolution of the centrosome, 119
Borrel, 2020, The host- associated archaeome, Nat. Rev. Microbiol., 18, 622, 10.1038/s41579-020-0407-y
Brugerolle, 2003, The rhizoplast of chrysomonads, a basal body–nucleus connector that polarises,the dividing spindle, Protoplasma, 222, 13, 10.1007/s00709-003-0016-4
Butterfield, 2015, Early evolution of the Eukaryota, Palaeontology, 58, 5, 10.1111/pala.12139
Chapman, 2012, Karyomastigont as an evolutionary seme, Q. Rev. Biol., 87, 315, 10.1086/668165
Dantas, 2012, Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance, Cell. Mol. Life Sci., 69, 2979, 10.1007/s00018-012-0961-1
Darnell, 2020, The ribbon-helix-helix domain protein CdrS regulates the tubulin homolog ftsZ2 to control cell division in archaea, mBio, 11, e01007, 10.1128/mBio.01007-20
Davidov, 2009, Predation between prokaryotes and the origin of eukaryotes, Bioessays, 31, 748, 10.1002/bies.200900018
Dolan, 2002, Motility proteins and the origin of the nucleus, Anat. Rec., 268, 290, 10.1002/ar.10161
Deeg, 2020, From the inside out: an epibiotic Bdellovibrio predator with an expanded genomic complement, J. Bacteriol., 202, 19, 10.1128/JB.00565-19
Einarsson, 2016, An up-date on Giardia and giardiasis, Curr. Opin. Microbiol., 34, 37, 10.1016/j.mib.2016.07.019
Ettema, 2009, Cell division and the ESCRT complex: a surprise from the archaea, Commun. Integr. Biol., 2, 86, 10.4161/cib.7523
Endicott, 2018, NUP98 sets the size-exclusion diffusion limit through the ciliary base, Curr. Biol., 28, 1643, 10.1016/j.cub.2018.04.014
Fawcett, 1975, The mammalian spermatozoon, Dev. Biol., 44, 394, 10.1016/0012-1606(75)90411-X
Feldman, 2007, The mother centriole plays an instructive role in defining cell geometry, PLoS Biol., 5, e149, 10.1371/journal.pbio.0050149
Fishman, 2018, A novel atypical sperm centriole is functional during human fertilization, Nat. Commun., 9, 2210, 10.1038/s41467-018-04678-8
Fournier, 2018, A briefly argued case that asgard archaea are part of the eukaryote tree, Front. Microbiol., 9, 1896, 10.3389/fmicb.2018.01896
Fritz-Laylin, 2010, The genome of Naegleria gruberi illuminates early eukaryotic versatility, Cell, 140, 631, 10.1016/j.cell.2010.01.032
Fritz-Laylin, 2011, The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology, Res. Microbiol., 162, 607, 10.1016/j.resmic.2011.03.003
Gabaldón, 2018, Relative timing of mitochondrial endosymbiosis and the "pre-mitochondrial symbioses" hypothesis, IUBMB Life, 70, 1188, 10.1002/iub.1950
Galletta, 2020, Sperm head-tail linkage requires restriction of pericentriolar material to the proximal centriole end, Dev. Cell, 52, 1
Gardiner, 1981, Studies of the rhizoplast from Naegleria gruberi, J. Cell Sci., 47, 277, 10.1242/jcs.47.1.277
Gilbert, 2012, A symbiotic view of life: we have never been individuals, Q. Rev. Biol., 87, 325, 10.1086/668166
Goldman, 2012, Ad memoriam – Lynn Margulis (5.03.1938–22.11.2011), Stud. Hist. Biol., 4, 119
Gräf, 2018, Comparative biology of centrosomal structures in eukaryotes, Cells, 7, 202, 10.3390/cells7110202
Gräf, 2015, Evolution of centrosomes and the nuclear lamina: amoebozoan assets, Eur. J. Cell Biol., 94, 249, 10.1016/j.ejcb.2015.04.004
Gray, 2017, Lynn Margulis and the endosymbiont hypothesis: 50 years later, Mol. Biol. Cell, 28, 1285, 10.1091/mbc.e16-07-0509
Gupta, 1996, The origin of the eukaryotic cell, Trends Biochem. Sci., 21, 166, 10.1016/S0968-0004(96)20013-1
Hagen, 2020, Microtubule organelles in Giardia, Adv. Parasitol., 107, 25, 10.1016/bs.apar.2019.11.001
Hartman, 2002, The origin of the eukaryotic cell: a genomic investigation, Proc. Natl. Acad. Sci. U.S.A., 99, 1420, 10.1073/pnas.032658599
Hinchcliffe, 2001, Requirement of a centrosomal activity for cell cycle progression through G1 into S phase, Science, 291, 1547, 10.1126/science.1056866
Horiike, 2001, Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis, Nat. Cell Biol., 3, 204, 10.1038/35055129
Horz, 2015, Archaeal lineages within the human microbiome: absent, rare or elusive?, Life, 5, 1333, 10.3390/life5021333
Imachi, 2020, Isolation of an archaeon at the prokaryote-eukaryote interface, Nature, 577, 519, 10.1038/s41586-019-1916-6
Inaba, 2011, Sperm flagella: comparative and phylogenetic perspectives of protein components, Mol. Hum. Reprod., 17, 524, 10.1093/molehr/gar034
Ito, 2018, Centrosome remodelling in evolution, Cells, 7, 71, 10.3390/cells7070071
Jung, 2020, Archaea, tiny helpers of land plants, Comput. Struct. Biotechnol. J., 18, 2494, 10.1016/j.csbj.2020.09.005
Kee, 2012, A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia, Nat. Cell Biol., 14, 431, 10.1038/ncb2450
Kee, 2013, Molecular connections between nuclear and ciliary import processes, Cilia, 2, 11, 10.1186/2046-2530-2-11
Klinger, 2016, Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks, Mol. Biol. Evol., 33, 1528, 10.1093/molbev/msw034
Klink, 2001, Centrin is necessary for the formation of the motile apparatus in spermatids of Marsilea, Mol. Biol. Cell, 12, 761, 10.1091/mbc.12.3.761
Koonin, 2010, The incredible expanding ancestor of eukaryotes, Cell, 140, 606, 10.1016/j.cell.2010.02.022
Koonin, 2010, The origin and early evolution of eukaryotes in the light of phylogenomics, Genome Biol., 11, 209, 10.1186/gb-2010-11-5-209
Koonin, 2015, Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?, Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20140333, 10.1098/rstb.2014.0333
Kronebusch, 1987, The microtubule-organizing complex and the Golgi apparatus are co-localized around the entire nuclear envelope of interphase cardiac myocytes, J. Cell Sci., 88, 25, 10.1242/jcs.88.1.25
Kutschera, 2011, From the scala naturae to the symbiogenetic and dynamic tree of life, Biol. Direct, 6, 1, 10.1186/1745-6150-6-33
Kutschera, 2016, Haeckel's tree of life and the origin of eukaryotes, Nat. Microbiol., 1, 16114, 10.1038/nmicrobiol.2016.114
Kutschera, 2019, Ernst Haeckel (1834-1919): the German Darwin and his impact on modern biology, Theor. Biosci., 138, 1, 10.1007/s12064-019-00276-4
Lake, 1989, Origin of the eukaryotic nucleus: eukaryotes and eocytes are genotypically related, Can. J. Microbiol., 35, 109, 10.1139/m89-017
Lake, 2011, Lynn Margulis (1938–2011), Nature, 480, 458, 10.1038/480458a
Lake, 1984, Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes, Proc. Natl. Acad. Sci. U.S.A., 81, 3786, 10.1073/pnas.81.12.3786
Larson, 1981, Isolation, ultrastructure, and protein composition of the flagellar rootlet of Naegleria gruberi, J. Cell Biol., 89, 424, 10.1083/jcb.89.3.424
Lei, 2018, Mechanisms of ciliary targeting: entering importins and Rabs, Cell. Mol. Life Sci., 75, 597, 10.1007/s00018-017-2629-3
Levit, 2019, Ernst Haeckel in the history of biology, Curr. Biol., 29, R1269, 10.1016/j.cub.2019.10.064
Levy, 1996, Centrin is a conserved protein that forms diverse associations with centrioles and MTOCs in Naegleria and other organisms, Cell Motil. Cytoskelet., 33, 298, 10.1002/(SICI)1097-0169(1996)33:4<298::AID-CM6>3.0.CO;2-5
Levy, 1998, Centrin is synthesized and assembled into basal bodies during Naegleria differentiation, Cell Motil. Cytoskelet., 40, 249, 10.1002/(SICI)1097-0169(1998)40:3<249::AID-CM4>3.0.CO;2-8
López-García, 2020, The Syntrophy hypothesis for the origin of eukaryotes revisited, Nat. Microbiol., 5, 655, 10.1038/s41564-020-0710-4
López-García, 2020, Cultured asgard archaea shed light on eukaryogenesis, Cell, 181, 232, 10.1016/j.cell.2020.03.058
López-García, 2017, Symbiosis in eukaryotic evolution, J. Theor. Biol., 434, 20, 10.1016/j.jtbi.2017.02.031
Lu, 2020, Coevolution of eukaryote-like Vps4 and ESCRT-III subunits in the Asgard archaea, mBio, 11, e00417, 10.1128/mBio.00417-20
Lyons, 2020
Margulis, 1970
Margulis, 1981
Margulis, 2000, The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists, Proc. Natl. Acad. Sci. U.S.A., 97, 6954, 10.1073/pnas.97.13.6954
Margulis, 2006, The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon, Proc. Natl. Acad. Sci. U.S.A., 103, 13080, 10.1073/pnas.0604985103
Margulis, 2007, Semes for analysis of evolution: de Duve's peroxisomes and Meyer's hydrogenases in the sulphurous Proterozoic eon, Nat. Rev. Genet., 8, 902, 10.1038/nrg2071-c1
Marquez, 2021, Nucleoporin NUP205 plays a critical role in cilia and congenital disease, Dev. Biol., 469, 46, 10.1016/j.ydbio.2020.10.001
Mazia, 1987, The chromosome cycle and the centrosome cycle in the mitotic cycle, Int. Rev. Cytol., 100, 49, 10.1016/S0074-7696(08)61698-8
Mazia, 1993, The cell cycle at the cellular level, Eur. J. Cell Biol., 61, 14
Mazia, 1952, The isolation and biochemical characterization of the mitotic apparatus of dividing cells, Proc. Natl. Acad. Sci. U.S.A., 38, 826, 10.1073/pnas.38.9.826
McInally, 2016, Eight unique basal bodies in the multi-flagellated diplomonad Giardia lamblia, Cilia, 5, 21, 10.1186/s13630-016-0042-4
Melkonian, 1980, Ultrastructural aspects of basal body associated fibrous structures in green algae: a critical review, Biosystems, 12, 85, 10.1016/0303-2647(80)90040-4
Merchant, 2007, The Chlamydomonas genome reveals the evolution of key animal and plant functions, Science, 318, 245, 10.1126/science.1143609
Mikhailovsky, 2018, Symbiosis: why was the transition from microbial prokaryotes to eukaryotic organisms a cosmic gigayear event?, 355
Moissl-Eichinger, 2018, Archaea are interactive components of complex microbiomes, Trends Microbiol., 26, 70, 10.1016/j.tim.2017.07.004
Moseman, 2020, Battling brain-eating amoeba: enigmas surrounding immunity to Naegleria fowleri, PLoS Pathog., 16, 10.1371/journal.ppat.1008406
Neveu, 2020, Prototypic SNARE proteins are encoded in the genomes of Heimdallarchaeota, potentially bridging the gap between the prokaryotes and eukaryotes, Curr. Biol., 30, 2468, 10.1016/j.cub.2020.04.060
Noller, 2013, Carl woese (1928–2012), Nature, 493, 610, 10.1038/493610a
Obado, 2012, Ciliary and nuclear transport: different places, similar routes?, Dev. Cell, 22, 693, 10.1016/j.devcel.2012.04.002
Olsson, 2017, The „Biogenetic Law“ in zoology: from Ernst Haeckel's formulation to current approaches, Theor. Biosci., 136, 19, 10.1007/s12064-017-0243-4
Porter, 2020, Insights into eukaryogenesis from the fossil record, Inter. Focus, 10, 20190105
Raven, 1971, Origin of eukaryotic cells, Evolution, 25, 737
Raven, 1970, A multiple origin for plastids and mitochondria, Science, 169, 641, 10.1126/science.169.3946.641
Renzaglia, 2001, Motile gametes of land plants: diversity, development, and evolution, Crit. Rev. Plant Sci., 20, 107, 10.1080/20013591099209
Resendes, 2008, Centrin 2 localizes to the vertebrate nuclear pore and plays a role in mRNA and protein export, Mol. Cell Biol., 28, 1755, 10.1128/MCB.01697-07
Rivera, 1992, Evidence that eukaryotes and eocyte prokaryotes are immediate relatives, Science, 257, 74, 10.1126/science.1621096
Robinson, 2007, Centrioles position the nucleus and one another, PLoS Biol., 5, e161, 10.1371/journal.pbio.0050161
Sachs, 1892, Beiträge zur Zellentheorie. Energiden und Zellen, Flora, 75, 57
Sachs, 1892, Weitere Betrachtungen über Energiden und Zellen, Flora, 81, 405
Sagan, 1967, On the origin of mitosing cells, J. Theor. Biol., 14, 225, 10.1016/0022-5193(67)90079-3
Salcher, 2020, Visualization of Lokiarchaeia and Heimdallarchaeia (Asgardarchaeota) by fluorescence in situ hybridization and catalyzed reporter deposition (CARD-FISH), mSphere, 5, 20, 10.1128/mSphere.00686-20
Salisbury, 1995, Centrin, centrosomes, and mitotic spindle poles, Curr. Opin. Cell Biol., 7, 39, 10.1016/0955-0674(95)80043-3
Salisbury, 2007, A mechanistic view on the evolutionary origin for centrin‐based control of centriole duplication, J. Cell. Physiol., 213, 420, 10.1002/jcp.21226
Salisbury, 1998, Roots, J. Eukaryot. Microbiol., 45, 28, 10.1111/j.1550-7408.1998.tb05064.x
Salisbury, 1984, Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle, J. Cell Biol., 99, 962, 10.1083/jcb.99.3.962
Salisbury, 1987, Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii, J. Cell Biol., 105, 1799, 10.1083/jcb.105.4.1799
Salisbury, 1988, The centrin-based cytoskeleton of Chlamydomonas reinhardtii: distribution in interphase and mitotic cells, J. Cell Biol., 107, 635, 10.1083/jcb.107.2.635
Samson, 2017, The structure, function and roles of the Archaeal ESCRT apparatus, 357
Sapp, 1994
Sapp, 2005
Sapp, 2009
Sapp, 2010, Saltational symbiosis, Theor. Biosci., 129, 125, 10.1007/s12064-010-0089-5
Sapp, 2013, The singular quest for a universal tree of life, Microbiol. Mol. Biol. Rev., 77, 541, 10.1128/MMBR.00038-13
Sasso, 2018, From molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature, eLife, 7, 10.7554/eLife.39233
Schatten, 2011, The sperm centrosome: its role and significance in nature and human assisted reproduction, J. Reprod. Stem Cell Biotechnol., 2, 121, 10.1177/205891581100200206
Schatten, 2015, Sperm centrosomes: kiss your asterless goodbye, for fertility's sake, Curr. Biol., 25, R1166, 10.1016/j.cub.2015.11.015
Schleper, 2020, Meet the relatives of our cellular ancestor, Nature, 577, 478, 10.1038/d41586-020-00039-y
Siddiqui, 2016, Biology and pathogenesis of Naegleria fowleri, Acta Trop., 164, 375, 10.1016/j.actatropica.2016.09.009
Spang, 2015, Complex archaea that bridge the gap between prokaryotes and eukaryotes, Nature, 521, 173, 10.1038/nature14447
Stairs, 2020, The Archaeal roots of the eukaryotic dynamic actin cytoskeleton, Curr. Biol., 30, R521, 10.1016/j.cub.2020.02.074
Stewart, 1978, Structural evolution in the flagellated cells of green algae and land plants, Biosystems, 10, 145, 10.1016/0303-2647(78)90036-9
Taylor, 1974, Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes, Taxon, 23, 229, 10.2307/1218702
Taylor, 1976, Autogenous theories for the origin of eukaryotes, Taxon, 25, 377, 10.2307/1220521
Wilson, 2011, Evolution: functional evolution of nuclear structure, J. Cell Biol., 195, 171, 10.1083/jcb.201103171
Wingfield, 2018, Chlamydomonas basal bodies as flagella organizing centers, Cells, 7, 79, 10.3390/cells7070079
Woese, 1977, Phylogenetic structure of the prokaryote domain: the primary kingdoms, Proc. Natl. Acad. Sci. U.S.A., 75, 5088, 10.1073/pnas.74.11.5088
Wright, 1985, A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation, J. Cell Biol., 101, 1903, 10.1083/jcb.101.5.1903
Zaremba-Niedzwiedzka, 2017, Asgard archaea illuminate the origin of eukaryotic cellular complexity, Nature, 541, 353, 10.1038/nature21031
Zimmer, 2009, On the origin of eukaryotes, Science, 325, 666, 10.1126/science.325_666