Treatment options for hyponatremia in heart failure

Heart Failure Reviews - Tập 14 - Trang 65-73 - 2008
Steven R. Goldsmith1,2
1Cardiology Division, Hennepin County Medical Center, Minneapolis, USA
2the University of Minnesota, Minneapolis, USA.

Tóm tắt

Hyponatremia is independently associated with adverse outcomes in patients with congestive heart failure (CHF). The primary cause of hyponatremia in CHF is the inappropriate secretion of the antidiuretic hormone, arginine vasopressin (AVP). The binding of AVP to V2 receptors in the renal collecting duct promotes water retention, a process that can lead to dilutional hyponatremia as well as increased ventricular preload. AVP could also exacerbate the course of CHF by interacting with V1A receptors on vascular smooth muscle cells and myocytes. Conventional treatment of hyponatremia in CHF is based largely on water restriction, which is neither effective nor well tolerated. Current research is exploring V2- and dual V1A/V2-receptor antagonism for the treatment of hyponatremia, as well as for the congestion and edema associated with CHF, since AVP-receptor antagonists may offer benefits in comparison to conventional loop diuretics. Clinical trials in patients with hyponatremia and CHF using both selective and nonselective vasopressin antagonists have demonstrated the effectiveness of these agents in correcting this common electrolyte abnormality.

Tài liệu tham khảo

American Heart Association (2003) Heart disease and stroke statistics—2004 update. American Heart Association, Dallas, Texas Fonarow GC, ADHERE Scientific Advisory Committee (2003) The acute decompensated heart failure national registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure. Rev Cardiovasc Med 4(suppl 7):S21–S30 Cuffe MS, Califf RM, Adams KF Jr, Benza R, Bourge R, Colucci WS et al (2002) Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. J Am Med Assoc 287:1541–1547. doi:10.1001/jama.287.12.1541 Chin MH, Goldman L (1996) Correlates of major complications or death in patients admitted to the hospital with congestive heart failure. Arch Intern Med 156:1814–1820. doi:10.1001/archinte.156.16.1814 Wong PS, Davidsson GK, Timeyin J, Warren A, Watson DJ, Vincent R et al (2002) Heart failure in patients admitted to hospital: mortality is still high. Eur J Intern Med 13:304–310. doi:10.1016/S0953-6205(02)00086-9 Chen M-C, Chang H-W, Cheng C-I, Chen Y-H, Chai H-T (2003) Risk stratification of in-hospital mortality in patients hospitalized for chronic congestive heart failure secondary to non-ischemic cardiomyopathy. Cardiology 100:136–142. doi:10.1159/000073931 Krumholz HM, Chen Y-T, Bradford WD, Cerese J (1999) Variations and correlates of length of stay in academic hospitals among patients with heart failure resulting from systolic dysfunction. Am J Manag Care 5:715–723 Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV (2003) Predicting mortality among patients hospitalized for heart failure. Derivation and validation of a clinical model. J Am Med Assoc 290:2581–2587. doi:10.1001/jama.290.19.2581 Klein L, O’Connor CM, Leimberger JD, Gattis-Stough W, Pina IL, Felker GM et al (2005) Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: results from the outcomes of a prospective trial of intravenous milrinone for exacerbations of chronic heart failure (OPTIME-CHF) study. Circulation 111:2454–2460. doi:10.1161/01.CIR.0000165065.82609.3D Lee WH, Packer M (1986) Prognostic importance of serum sodium concentration and its modification by converting-enzyme inhibition in patients with severe chronic heart failure. Circulation 73:257–267 Kearney MT, Fox KAA, Lee AJ, Prescott RJ, Shah AM, Batin PD et al (2002) Predicting death due to progressive heart failure in patients with mild-to-moderate chronic heart failure. J Am Coll Cardiol 40:1801–1808. doi:10.1016/S0735-1097(02)02490-7 Szatalowicz VL, Arnold PE, Chaimovitz C, Bichet D, Berl T, Schrier RW (1981) Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N Engl J Med 305:263–266 Riegger GAJ, Lebau G, Kochsiek K (1982) Antidiuretic hormone in congestive heart failure. Am J Med 72:49–52. doi:10.1016/0002-9343(82)90576-9 Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang C-S et al (1990) Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the studies of left ventricular dysfunction (SOLVD). Circulation 82:1724–1729 Goldsmith SR, Francis GS, Cowley AW, Levine TB, Cohn JN (1983) Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol 1:1385–1390 Goldsmith SR, Francis GS, Cowley AW Jr (1986) Arginine vasopressin and the renal response to water loading in congestive heart failure. Am J Cardiol 58:295–299. doi:10.1016/0002-9149(86)90065-2 Pruszczynski W, Vahanian A, Ardaillou R, Acar J (1984) Role of antidiuretic hormone in impaired water excretion of patients with congestive heart failure. J Clin Endocrinol Metab 58:599–605 Bichet DG, Kortas C, Mettauer B, Manzini C, Marc-Aurèle J, Rouleau JL et al (1986) Modulation of plasma and platelet vasopressin by cardiac function in patients with heart failure. Kidney Int 29:1188–1196. doi:10.1038/ki.1986.126 Gheorghiade M, Gattis WA, O’Connor CM, Adams KF, Elkayam U, Barbagelata A et al (2004) Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. J Am Med Assoc 291:1963–1971. doi:10.1001/jama.291.16.1963 Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G (2006) Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med 119:71.e1–71.e8 Licata G, Di Pasquale P, Parrinello G, Cardinale A, Scandurra A, Follone G et al (2003) Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: long-term effects. Am Heart J 145:459–466. doi:10.1067/mhj.2003.166 Goldsmith SR (1988) Baroreflex control of vasopressin secretion in normal humans. In: Cowley AW, Liard J-F, Ausiello DA (eds) Vasopressin: cellular and integrative functions. Raven Press, New York, NY, pp 389–397 Dillingham MA, Anderson RJ (1986) Inhibition of vasopressin action by atrial natriuretic factor. Science 231:1572–1573. doi:10.1126/science.3006248 Goldsmith SR (1999) Vasopressin: a therapeutic target in congestive heart failure? J Card Fail 5:347–356. doi:10.1016/S1071-9164(99)91339-8 Verbalis JG (2002) Vasopressin V2 receptor antagonists. J Mol Endocrinol 29:1–9. doi:10.1677/jme.0.0290001 Nielsen S, Kwon TH, Christensen BM, Promeneur D, Frøkiaer J, Marples D (1999) Physiology and pathophysiology of renal aquaporins. J Am Soc Nephrol 10:647–663 Hirsch AT, Dzau VJ, Majzoub JA, Creager MA (1989) Vasopressin-mediated forearm vasodilation in normal humans. Evidence for a vascular vasopressin V2 receptor. J Clin Invest 84:418–426. doi:10.1172/JCI114182 Kaufmann JE, Oksche A, Wollheim CB, Günther G, Rosenthal W, Vishcer UM (2000) Vasopressin-induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP. J Clin Invest 106:107–116. doi:10.1172/JCI9516 Tanoue A, Ito S, Honda K, Oshikawa S, Kitagawa Y, Koshimizu T-A et al (2004) The vasopressin 1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. J Clin Invest 113:302–309 Creager MA, Faxon DP, Cutler SS, Kohlmann O, Ryan TJ, Gavras H (1986) Contribution of vasopressin to vasoconstriction in patients with congestive heart failure: comparison with the renin-angiotensin system and the sympathetic nervous system. J Am Coll Cardiol 7:758–765 Goldsmith SR, Francis GS, Cowley AW Jr, Goldenberg IF, Cohn JN (1986) Hemodynamic effects of infused arginine vasopressin in congestive heart failure. J Am Coll Cardiol 8:779–783 Xu YJ, Gopalakrishnan V (1991) Vasopressin increases cytosolic free [Ca2+] in the neonatal rat cardiomyocyte. Evidence for V1 subtype receptors. Circ Res 69:239–245 Nakamura Y, Haneda T, Osaki J, Miyata S, Kikuchi K (2000) Hypertrophic growth of cultured neonatal rat heart cells mediated by vasopressin V(1A) receptor. Eur J Pharmacol 391:39–48. doi:10.1016/S0014-2999(99)00775-X Yamamura Y, Nakamura S, Itoh S, Hirano T, Onogawa T, Yamashita T et al (1998) OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats. J Pharmacol Exp Ther 287:860–867 Chan PS, Coupet J, Pack HC, Lai F, Hartupee D, Cervoni P et al (1998) VPA-985, a nonpeptide orally active and selective vasopressin V2 receptor antagonist. Adv Exp Med Biol 449:439–443 Tahara A, Tomura Y, Wada K-I, Kusayama T, Tsukada J, Takanashi M et al (1997) Pharmacological profile of YM087, a novel potent nonpeptide vasopressin V1A and V2 receptor antagonist, in vitro and in vivo. J Pharmacol Exp Ther 282:301–308 Tomura Y, Tahara A, Tsukada J, Yatsu T, Uchida W, Iizumi Y et al (1999) Pharmacological profile of orally administered YM087, a vasopressin antagonist, in conscious rats. Clin Exp Pharmacol Physiol 26:399–403. doi:10.1046/j.1440-1681.1999.03045.x Risvanis J, Naitoh M, Johnston CI, Burrell LM (1999) In vivo and in vitro characterisation of a nonpeptide vasopressin V1A and V2 receptor antagonist (YM087) in the rat. Eur J Pharmacol 381:23–30. doi:10.1016/S0014-2999(99)00530-0 Yatsu T, Tomura Y, Tahara A, Wada K-I, Tsukada J, Uchida W et al (1997) Pharmacological profile of YM087, a novel nonpeptide dual vasopressin V1A and V2 receptor antagonist, in dogs. Eur J Pharmacol 321:225–230. doi:10.1016/S0014-2999(96)00940-5 Serradeil-Le Gal C (2001) An overview of SR121463, a selective non-peptide vasopressin V2 receptor antagonist. Cardiovasc Drug Rev 19:201–214 Naitoh M, Suzuki H, Murakami M, Matsumoto A, Arakawa K, Ichihara A et al (1994) Effects of oral AVP receptor antagonists OPC-21268 and OPC-31260 on congestive heart failure in conscious dogs. Am J Physiol 267:H2245–H2254 Nishikimi T, Kawano Y, Saito Y, Matsuoka H (1996) Effect of long-term treatment with selective V1 and V2 receptor antagonist on the development of heart failure in rats. J Cardiovasc Pharmacol 27:275–282. doi:10.1097/00005344-199602000-00015 Yatsu T, Tomura Y, Tahara A, Wada K-I, Kusayama T, Tsukada J et al (1999) Cardiovascular and renal effects of conivaptan hydrochloride (YM087), a vasopressin V1A and V2 receptor antagonist, in dogs with pacing-induced congestive heart failure. Eur J Pharmacol 376:239–246. doi:10.1016/S0014-2999(99)00379-9 Wada K, Tahara A, Arai Y, Aoki M, Tomura Y, Tsukada J et al (2002) Effect of the vasopressin antagonist conivaptan in rats with heart failure following myocardial infarction. Eur J Pharmacol 450:169–177. doi:10.1016/S0014-2999(02)02101-5 Naitoh M, Risvanis J, Balding LC, Johnston CI, Burrell LM (2002) Neurohormonal antagonism in heart failure; beneficial effects of vasopressin V1a and V2 receptor blockade and ACE inhibition. Cardiovasc Res 54:51–57. doi:10.1016/S0008-6363(02)00244-4 Zeltser D, Rosansky S, van Rensburg H, Verbalis JG, Smith N, Conivaptan Study Group (2007) Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol 27:447–457. doi:10.1159/000106456 Annane D, Decaux G, Smith N (2008) Efficacy and safety of oral conivaptan, a vasopressin-receptor antagonist, evaluated in a randomized, controlled trial in patients with euvolemic or hypervolemic hyponatremia. Am J Med Sci (in press) Ghali JK, Koren MJ, Taylor JR, Brooks-Asplund E, Fan K, Long WA et al (2006) Efficacy and safety of oral conivaptan: a V1A/V2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvolemic or hypervolemic hyponatremia. J Clin Endocrinol Metab 91:2145–2152. doi:10.1210/jc.2005-2287 Ghali JK, Verbalis JG, Gross P, Long WA, Smith N (2006) Conivaptan, a novel arginine vasopressin antagonist, increased serum sodium concentration in patients with heart failure and euvolemic or hypervolemic hyponatremia. J Am Coll Cardiol 47(suppl A):62A Ghali JK, Yan B, McNutt B (2008) Conivaptan, a vasopressin-receptor antagonist, for the treatment of hyponatremia in patients with and without underlying heart failure. Abstract to be presented at: heart failure society of America 12th annual scientific meeting, Toronto, Canada, 21 September 2008 Wong F (2003) A vasopressin receptor antagonist (VPA-985) improves serum sodium concentration in patients with hyponatremia: a multicenter, randomized, placebo-controlled trial. Hepatology 37:182–191. doi:10.1053/jhep.2003.50021 Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS et al (2006) Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med 355:2099–2112. doi:10.1056/NEJMoa065181 Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K et al (2007) Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. J Am Med Assoc 297:1319–1331. doi:10.1001/jama.297.12.1319 Krämer BK, Schweda F, Riegger GAJ (1999) Diuretic treatment and diuretic resistance in heart failure. Am J Med 106:90–96. doi:10.1016/S0002-9343(98)00365-9 Greenberg A (2000) Diuretic complications. Am J Med Sci 319:10–24. doi:10.1097/00000441-200001000-00002 Weber KT (2004) Furosemide in the long-term management of heart failure: the good, the bad, and the uncertain. J Am Coll Cardiol 44:1308–1310 Francis GS, Siegel RM, Goldsmith SR, Olivari MT, Levine B, Cohn JN (1985) Acute vasoconstrictor response to intravenous furosemide in patients with chronic congestive heart failure. Ann Intern Med 103:1–6 Ikram H, Chan W, Espiner EA, Nicholls MG (1980) Haemodynamic and hormone responses to acute and chronic frusemide therapy in congestive heart failure. Clin Sci 59:443–449 McCurley JM, Hanlon SU, Wei SK, Wedam EF, Michalski M, Haigney MC (2004) Furosemide and the progression of left ventricular dysfunction in experimental heart failure. J Am Coll Cardiol 44:1301–1307. doi:10.1016/j.jacc.2004.04.059 Domanski M, Norman J, Pitt B, Haigney M, Hanlon S, Peyster E (2003) Diuretic use, progressive heart failure, and death in patients in the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 42:705–708. doi:10.1016/S0735-1097(03)00765-4 Hirano T, Yamamura Y, Nakamura S, Onogawa T, Mori T (2000) Effects of the V2-receptor antagonist OPC-41061 and the loop diuretic furosemide alone and in combination in rats. J Pharmacol Exp Ther 292:288–294 Goldsmith SR, Elkayam U, Haught WH, Barve A, He W (2008) Efficacy and safety of the vasopressin V1A/V2-receptor antagonist conivaptan in acute decompensated heart failure: a dose-ranging pilot study. J Card Fail (in press) Udelson JE, Smith WB, Hendrix GH, Painchaud CA, Ghazzi M, Thomas I et al (2001) Acute hemodynamic effects of conivaptan, a dual V1A and V2 vasopressin receptor antagonist, in patients with advanced heart failure. Circulation 104:2417–2423. doi:10.1161/hc4501.099313 Costello-Boerrigter LC, Smith WB, Boerrigter G, Ouyang J, Zimmer CA, Orlandi C et al (2006) Vasopressin-2-receptor antagonism augments water excretion without changes in renal hemodynamics or sodium and potassium excretion in human heart failure. Am J Physiol Renal Physiol 290:F273–F278. doi:10.1152/ajprenal.00195.2005