Tofu-inspired microcarriers from droplet microfluidics for drug delivery
Tóm tắt
Microcarriers have attracted increasing interests in drug delivery. In order to develop this technique, it is prone to focus on the generation of functional particles through using simple approaches and novel but accessible materials. Here, inspired by the formation mechanism of tofu that through the mixing of soymilk and brine for cross-linking soybean proteins, we present novel soybean protein microcarriers by using microfluidic generation approach for drug delivery. Since the soybean protein droplets are generated by microfluidic emulsification method, the tofu microparticles present highly monodisperse and homogeneous morphologies. Because of the excellent biocompatibility of the soybean protein and the interconnected porous structures throughout the whole microparticles after freeze-drying, various kinds of drugs and active molecules could be absorbed and loaded in the microcarriers, which makes them versatile for drug delivery. It can be anticipated that the microfluidic-generated tofu microcarriers will have great potential in the biomedical field.
Tài liệu tham khảo
Denkov N, Tcholakova S, Lesov I, Cholakova D, Smoukov SK. Nature, 2015, 528: 392–395
McHugh KJ, Nguyen TD, Linehan AR, Yang D, Behrens AM, Rose S, Tochka ZL, Tzeng SY, Norman JJ, Anselmo AC, Xu X, Tomasic S, Taylor MA, Lu J, Guarecuco R, Langer R, Jaklenec A. Science, 2017, 357: 1138–1142
Zhang YS, Khademhosseini A. Science, 2017, 356: eaaf3627
Yadavali S, Jeong HH, Lee D, Issadore D. Nat Commun, 2018, 9: 1222
Zhang J, Wei H, Tan J, Qiao W, Guan Y, Zhang J. Sci China Chem, 2018, 61: 328–335
Lei Y, Hamada Y, Li J, Cong L, Wang N, Li Y, Zheng W, Jiang X. J Control Release, 2016, 232: 131–142
Lai WF, Shum HC. Nanoscale, 2016, 8: 517–528
Wu S, Li J, Liang H, Wang L, Chen X, Jin G, Xu X, Yang HH. Sci China Chem, 2017, 60: 628–634
Lee TY, Ku M, Kim B, Lee S, Yang J, Kim SH. Small, 2017, 13: 1700646
Min NG, Ku M, Yang J, Kim SH. Chem Mater, 2016, 28: 1430–1438
Lawrence MJ, Rees GD. Adv Drug Deliv Rev, 2012, 64: 175–193
Allen TM, Cullis PR. Adv Drug Deliv Rev, 2013, 65: 36–48
Dash TK, Konkimalla VB. J Control Release, 2012, 158: 15–33
Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK. Int J Pharm Investig, 2012, 2: 2
Yu Y, Fu F, Shang L, Cheng Y, Gu Z, Zhao Y. Adv Mater, 2017, 29: 1605765
Song Y, Chan YK, Ma Q, Liu Z, Shum HC. ACS Appl Mater Interfaces, 2015, 7: 13925–13933
Shum HC, Zhao Y, Kim SH, Weitz DA. Angew Chem, 2011, 123: 1686–1689
Tang MYH, Shum HC. Lab Chip, 2016, 16: 4359–4365
Sim JY, Lee GH, Kim SH. Small, 2015, 11: 4938–4945
Kim SH, Weitz DA. Angew Chem, 2011, 123: 8890–8893
Shang L, Cheng Y, Zhao Y. Chem Rev, 2017, 117: 7964–8040
Ding W, Li Y, Xia H, Wang D, Tao X. ACS Nano, 2014, 8: 11206–11213
Mao Z, Xu H, Wang D. Adv Funct Mater, 2010, 20: 1053–1074
Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A. Biomaterials, 2016, 110: 45–59
Zhang YS, Khademhosseini A. Nanomedicine, 2015, 10: 685–688
Wang J, Zou M, Sun L, Cheng Y, Shang L, Fu F, Zhao Y. Sci China Mater, 2017, 60: 857–865
Zhao Y, Cheng Y, Shang L, Wang J, Xie Z, Gu Z. Small, 2015, 11: 151–174
Zhang L, Feng Q, Wang J, Sun J, Shi X, Jiang X. Angew Chem Int Ed, 2015, 54: 3952–3956
Feng Q, Liu J, Li X, Chen Q, Sun J, Shi X, Ding B, Yu H, Li Y, Jiang X. Small, 2017, 13: 1603109
Wang J, Sun L, Zou M, Gao W, Liu C, Shang L, Gu Z, Zhao Y. Sci Adv, 2017, 3: e1700004
Keidel R, Ghavami A, Lugo DM, Lotze G, Virtanen O, Beumers P, Pedersen JS, Bardow A, Winkler RG, Richtering W. Sci Adv, 2018, 4: eaao7086
Kim B, Soo Lee H, Kim J, Kim SH. Chem Commun, 2013, 49: 1865–1867
Gholampour N, Chaemchuen S, Hu ZY, Mousavi B, Van Tendeloo G, Verpoort F. Chem Eng J, 2017, 322: 702–709
Leong TSH, Martin GJO, Ashokkumar M. Ultrasons Sonochem, 2017, 35: 605–614
Galvão KCS, Vicente AA, Sobral PJA. Food Bioprocess Technol, 2018, 11: 355–367
Dowding PJ, Atkin R, Vincent B, Bouillot P. Langmuir, 2005, 21: 5278–5284
Hong Y, Gao C, Shi Y, Shen J. Polym Adv Technol, 2005, 16: 622–627
Wang J, Chen W, Sun J, Liu C, Yin Q, Zhang L, Xianyu Y, Shi X, Hu G, Jiang X. Lab Chip, 2014, 14: 1673–1677
Yu Y, Shang L, Gao W, Zhao Z, Wang H, Zhao Y. Angew Chem Int Ed, 2017, 56: 12127–12131
Shang L, Fu F, Cheng Y, Wang H, Liu Y, Zhao Y, Gu Z. J Am Chem Soc, 2015, 137: 15533–15539
Liu Y, Huang Q, Wang J, Fu F, Ren J, Zhao Y. Sci Bull, 2017, 62: 1283–1290
Wang R, Zhou L, Wang W, Li X, Zhang F. Nat Commun, 2017, 8: 14702
Li Y, Yan D, Fu F, Liu Y, Zhang B, Wang J, Shang L, Gu Z, Zhao Y. Sci China Mater, 2017, 60: 543–553
Deng W, Li J, Yao P, He F, Huang C. Macromol Biosci, 2010, 10: 1224–1234
Feng Q, Sun J, Jiang X. Nanoscale, 2016, 8: 12430–12443
Chen H, Ma Y, Wang X, Wu X, Zha Z. RSC Adv, 2017, 7: 248–255
Huang C, Yang G, Ha Q, Meng J, Wang S. Adv Mater, 2015, 27: 310–313