Tofu-inspired microcarriers from droplet microfluidics for drug delivery

Science in China Series B: Chemistry - Tập 62 - Trang 87-94 - 2018
Han Zhang1, Yuxiao Liu1, Jie Wang1, Changmin Shao1, Yuanjin Zhao1
1State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China

Tóm tắt

Microcarriers have attracted increasing interests in drug delivery. In order to develop this technique, it is prone to focus on the generation of functional particles through using simple approaches and novel but accessible materials. Here, inspired by the formation mechanism of tofu that through the mixing of soymilk and brine for cross-linking soybean proteins, we present novel soybean protein microcarriers by using microfluidic generation approach for drug delivery. Since the soybean protein droplets are generated by microfluidic emulsification method, the tofu microparticles present highly monodisperse and homogeneous morphologies. Because of the excellent biocompatibility of the soybean protein and the interconnected porous structures throughout the whole microparticles after freeze-drying, various kinds of drugs and active molecules could be absorbed and loaded in the microcarriers, which makes them versatile for drug delivery. It can be anticipated that the microfluidic-generated tofu microcarriers will have great potential in the biomedical field.

Tài liệu tham khảo

Denkov N, Tcholakova S, Lesov I, Cholakova D, Smoukov SK. Nature, 2015, 528: 392–395 McHugh KJ, Nguyen TD, Linehan AR, Yang D, Behrens AM, Rose S, Tochka ZL, Tzeng SY, Norman JJ, Anselmo AC, Xu X, Tomasic S, Taylor MA, Lu J, Guarecuco R, Langer R, Jaklenec A. Science, 2017, 357: 1138–1142 Zhang YS, Khademhosseini A. Science, 2017, 356: eaaf3627 Yadavali S, Jeong HH, Lee D, Issadore D. Nat Commun, 2018, 9: 1222 Zhang J, Wei H, Tan J, Qiao W, Guan Y, Zhang J. Sci China Chem, 2018, 61: 328–335 Lei Y, Hamada Y, Li J, Cong L, Wang N, Li Y, Zheng W, Jiang X. J Control Release, 2016, 232: 131–142 Lai WF, Shum HC. Nanoscale, 2016, 8: 517–528 Wu S, Li J, Liang H, Wang L, Chen X, Jin G, Xu X, Yang HH. Sci China Chem, 2017, 60: 628–634 Lee TY, Ku M, Kim B, Lee S, Yang J, Kim SH. Small, 2017, 13: 1700646 Min NG, Ku M, Yang J, Kim SH. Chem Mater, 2016, 28: 1430–1438 Lawrence MJ, Rees GD. Adv Drug Deliv Rev, 2012, 64: 175–193 Allen TM, Cullis PR. Adv Drug Deliv Rev, 2013, 65: 36–48 Dash TK, Konkimalla VB. J Control Release, 2012, 158: 15–33 Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK. Int J Pharm Investig, 2012, 2: 2 Yu Y, Fu F, Shang L, Cheng Y, Gu Z, Zhao Y. Adv Mater, 2017, 29: 1605765 Song Y, Chan YK, Ma Q, Liu Z, Shum HC. ACS Appl Mater Interfaces, 2015, 7: 13925–13933 Shum HC, Zhao Y, Kim SH, Weitz DA. Angew Chem, 2011, 123: 1686–1689 Tang MYH, Shum HC. Lab Chip, 2016, 16: 4359–4365 Sim JY, Lee GH, Kim SH. Small, 2015, 11: 4938–4945 Kim SH, Weitz DA. Angew Chem, 2011, 123: 8890–8893 Shang L, Cheng Y, Zhao Y. Chem Rev, 2017, 117: 7964–8040 Ding W, Li Y, Xia H, Wang D, Tao X. ACS Nano, 2014, 8: 11206–11213 Mao Z, Xu H, Wang D. Adv Funct Mater, 2010, 20: 1053–1074 Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A. Biomaterials, 2016, 110: 45–59 Zhang YS, Khademhosseini A. Nanomedicine, 2015, 10: 685–688 Wang J, Zou M, Sun L, Cheng Y, Shang L, Fu F, Zhao Y. Sci China Mater, 2017, 60: 857–865 Zhao Y, Cheng Y, Shang L, Wang J, Xie Z, Gu Z. Small, 2015, 11: 151–174 Zhang L, Feng Q, Wang J, Sun J, Shi X, Jiang X. Angew Chem Int Ed, 2015, 54: 3952–3956 Feng Q, Liu J, Li X, Chen Q, Sun J, Shi X, Ding B, Yu H, Li Y, Jiang X. Small, 2017, 13: 1603109 Wang J, Sun L, Zou M, Gao W, Liu C, Shang L, Gu Z, Zhao Y. Sci Adv, 2017, 3: e1700004 Keidel R, Ghavami A, Lugo DM, Lotze G, Virtanen O, Beumers P, Pedersen JS, Bardow A, Winkler RG, Richtering W. Sci Adv, 2018, 4: eaao7086 Kim B, Soo Lee H, Kim J, Kim SH. Chem Commun, 2013, 49: 1865–1867 Gholampour N, Chaemchuen S, Hu ZY, Mousavi B, Van Tendeloo G, Verpoort F. Chem Eng J, 2017, 322: 702–709 Leong TSH, Martin GJO, Ashokkumar M. Ultrasons Sonochem, 2017, 35: 605–614 Galvão KCS, Vicente AA, Sobral PJA. Food Bioprocess Technol, 2018, 11: 355–367 Dowding PJ, Atkin R, Vincent B, Bouillot P. Langmuir, 2005, 21: 5278–5284 Hong Y, Gao C, Shi Y, Shen J. Polym Adv Technol, 2005, 16: 622–627 Wang J, Chen W, Sun J, Liu C, Yin Q, Zhang L, Xianyu Y, Shi X, Hu G, Jiang X. Lab Chip, 2014, 14: 1673–1677 Yu Y, Shang L, Gao W, Zhao Z, Wang H, Zhao Y. Angew Chem Int Ed, 2017, 56: 12127–12131 Shang L, Fu F, Cheng Y, Wang H, Liu Y, Zhao Y, Gu Z. J Am Chem Soc, 2015, 137: 15533–15539 Liu Y, Huang Q, Wang J, Fu F, Ren J, Zhao Y. Sci Bull, 2017, 62: 1283–1290 Wang R, Zhou L, Wang W, Li X, Zhang F. Nat Commun, 2017, 8: 14702 Li Y, Yan D, Fu F, Liu Y, Zhang B, Wang J, Shang L, Gu Z, Zhao Y. Sci China Mater, 2017, 60: 543–553 Deng W, Li J, Yao P, He F, Huang C. Macromol Biosci, 2010, 10: 1224–1234 Feng Q, Sun J, Jiang X. Nanoscale, 2016, 8: 12430–12443 Chen H, Ma Y, Wang X, Wu X, Zha Z. RSC Adv, 2017, 7: 248–255 Huang C, Yang G, Ha Q, Meng J, Wang S. Adv Mater, 2015, 27: 310–313