Development and mechanical characterization of porous titanium bone substitutes
Tài liệu tham khảo
Ashman, 1984, A continuous wave technique for the measurement of the elastic properties of cortical bone, Journal of Biomechanics, 17, 349, 10.1016/0021-9290(84)90029-0
Castaño, 2002, Creation of a threedimensional model of the mandible and the TMJ in vivo by means of the finite element method, International Journal for Computation and Dent, 5, 87
Chen, 2009, Fabrication of porous titanium implants with biomechanical compatibility, Materials Letters, 63, 2659, 10.1016/j.matlet.2009.09.029
Cowin, S.C., 1989. Bone Mechanics, pp. 102, 103, 111–113.
Heinl, 2008, Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomaterialia, 4, 1536, 10.1016/j.actbio.2008.03.013
Hollander, 2006, Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming, Biomaterials, 27, 955, 10.1016/j.biomaterials.2005.07.041
Karachalios, 2004, The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty: a 10-year, prospective, randomized study, The Journal of Arthroplasty, 19, 469, 10.1016/j.arth.2003.12.081
Krishna, 2007, Low stiffness porous Ti structures for load-bearing implants, Acta Biomaterialia, 3, 997, 10.1016/j.actbio.2007.03.008
Li, 2006, Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment, Biomaterials, 27, 1223, 10.1016/j.biomaterials.2005.08.033
Lieurade, H.P., 1987. Effet de contraintes résiduelles et du rapport R sur la résistance à la fatigue des éléments soudés. In: Conférence, CETIM, Senlis, p. 99.
ISO 5832-2, 1999. Implants for surgery. Metallic materials. Part 2: unalloyed titanium.
Niu, 2009, Processing and properties of porous titanium using space holder technique, Materials Science and Engineering: A, 506, 148, 10.1016/j.msea.2008.11.022
Oh, 2003, Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Materialia, 49, 1197, 10.1016/j.scriptamat.2003.08.018
Otsuki, 2006, Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants, Biomaterials, 27, 5892, 10.1016/j.biomaterials.2006.08.013
Parthasarathy, 2010, Mechanical evaluation of porous titanium (Ti6Al4V ) structures with electron beam melting (EBM), Journal of the Mechanical Behavior of Biomedical Materials, 3, 249, 10.1016/j.jmbbm.2009.10.006
Reilly, 1975, The elastic and ultimate properties of compact bone tissue, Journal of Biomechanics, 8, 393, 10.1016/0021-9290(75)90075-5
Reilly, 1974, The elastic modulus for bone, Journal of Biomechanics, 7, 35, 10.1016/0021-9290(74)90018-9
Shiomi, 2004, Residual stress within metallic model made by selective laser melting process, CIRP Annals-Manufacturing Technology, 53, 195, 10.1016/S0007-8506(07)60677-5
Vandenbroucke, 2007, Selective Laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyping Journal, 13, 196, 10.1108/13552540710776142
Wohlfart, 1986, Residual stress as a consequence of welding, vol. 4
Xue, 2007, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomaterialia, 3, 1007, 10.1016/j.actbio.2007.05.009
Yook, 2009, Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting, Materials Letters, 63, 1502, 10.1016/j.matlet.2009.03.056