Development and mechanical characterization of porous titanium bone substitutes

A. Barbas1,2, A.-S. Bonnet1, P. Lipinski1, R. Pesci3, G. Dubois2
1LaBPS/ENIM, 1 route d’Ars Laquenexy–CS 65820, 57078 Metz Cedex, France
2OBL Paris, Immeuble Vecteur Sud, 70-86 avenue de la République, 92320 Châtillon, France
3ENSAM-Arts et Métiers ParisTech, LEM3 UMR CNRS 7239, 4 rue Augustin Fresnel, 57070 Metz, France

Tài liệu tham khảo

Ashman, 1984, A continuous wave technique for the measurement of the elastic properties of cortical bone, Journal of Biomechanics, 17, 349, 10.1016/0021-9290(84)90029-0 Castaño, 2002, Creation of a threedimensional model of the mandible and the TMJ in vivo by means of the finite element method, International Journal for Computation and Dent, 5, 87 Chen, 2009, Fabrication of porous titanium implants with biomechanical compatibility, Materials Letters, 63, 2659, 10.1016/j.matlet.2009.09.029 Cowin, S.C., 1989. Bone Mechanics, pp. 102, 103, 111–113. Heinl, 2008, Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomaterialia, 4, 1536, 10.1016/j.actbio.2008.03.013 Hollander, 2006, Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming, Biomaterials, 27, 955, 10.1016/j.biomaterials.2005.07.041 Karachalios, 2004, The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty: a 10-year, prospective, randomized study, The Journal of Arthroplasty, 19, 469, 10.1016/j.arth.2003.12.081 Krishna, 2007, Low stiffness porous Ti structures for load-bearing implants, Acta Biomaterialia, 3, 997, 10.1016/j.actbio.2007.03.008 Li, 2006, Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment, Biomaterials, 27, 1223, 10.1016/j.biomaterials.2005.08.033 Lieurade, H.P., 1987. Effet de contraintes résiduelles et du rapport R sur la résistance à la fatigue des éléments soudés. In: Conférence, CETIM, Senlis, p. 99. ISO 5832-2, 1999. Implants for surgery. Metallic materials. Part 2: unalloyed titanium. Niu, 2009, Processing and properties of porous titanium using space holder technique, Materials Science and Engineering: A, 506, 148, 10.1016/j.msea.2008.11.022 Oh, 2003, Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Materialia, 49, 1197, 10.1016/j.scriptamat.2003.08.018 Otsuki, 2006, Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants, Biomaterials, 27, 5892, 10.1016/j.biomaterials.2006.08.013 Parthasarathy, 2010, Mechanical evaluation of porous titanium (Ti6Al4V ) structures with electron beam melting (EBM), Journal of the Mechanical Behavior of Biomedical Materials, 3, 249, 10.1016/j.jmbbm.2009.10.006 Reilly, 1975, The elastic and ultimate properties of compact bone tissue, Journal of Biomechanics, 8, 393, 10.1016/0021-9290(75)90075-5 Reilly, 1974, The elastic modulus for bone, Journal of Biomechanics, 7, 35, 10.1016/0021-9290(74)90018-9 Shiomi, 2004, Residual stress within metallic model made by selective laser melting process, CIRP Annals-Manufacturing Technology, 53, 195, 10.1016/S0007-8506(07)60677-5 Vandenbroucke, 2007, Selective Laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyping Journal, 13, 196, 10.1108/13552540710776142 Wohlfart, 1986, Residual stress as a consequence of welding, vol. 4 Xue, 2007, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomaterialia, 3, 1007, 10.1016/j.actbio.2007.05.009 Yook, 2009, Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting, Materials Letters, 63, 1502, 10.1016/j.matlet.2009.03.056