Comparative transcriptome analysis reveals regulatory genes involved in cold tolerance and hypoxic adaptation of high-altitude Tibetan bumblebees

Apidologie - Tập 51 - Trang 1166-1181 - 2020
Yanjie Liu1, Hongyan Jin2, Muhammad Naeem1,3, Jiandong An1
1Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Institute of Apicultural Research, Beijing, China
2Tibet Vocational Technical College, Lhasa, China
3Department of Zoology, Wildlife & Fisheries, PARS Campus, University of Agriculture, Faisalabad, Pakistan

Tóm tắt

China has many habitats supporting a wide diversity of bumblebees, some species of which are limited in distribution to the Tibet Plateau. The high-altitude Tibet Plateau, which has low air density as well as extremely low temperatures, strains the energy requirements for flight in most insects. However, high-altitude bumblebees have adapted to the harsh conditions of this type of habitat. Bumblebees are a particular group of insect pollinators that exclusively utilize carbohydrates from flowers for energy to sustain flight. Here, gene expression was compared between low-altitude species and Bombus longipennis, and the genes upregulated in B. longipennis were involved in aerobic metabolism, such as the oxidative phosphorylation and citric acid cycle (TCA cycle) pathways. Furthermore, a conjoint analysis of the transcriptomes of six bumblebee species from the high-altitude Tibet Plateau and two bumblebee species from the low-altitude North China Plain showed that 19 genes were commonly upregulated in high-altitude species. Among these 19 commonly upregulated genes, Pfk1 was enriched in multiple glycometabolic pathways, which are the main energy pathways in bees; this upregulation enhanced the aerobic and anaerobic glycolysis processes to produce more ATP molecules to supply energy for high-altitude bumblebee flight under severe cold conditions. In addition, glycolysis was enhanced by two other genes, Rac1 and AAC2. Relative quantitative real-time PCR was used to verify that the three genes Pfk1, Rac1, and AAC2 were upregulated in the six main bumblebee species inhabiting the Tibet Plateau.

Tài liệu tham khảo

Altshuler, D.L., Dudley, R. (2006) The physiology and biomechanics of avian flight at high altitude. Integr Comp Biol 46 (1), 62-71. An, J., Huang, J., Shao, Y., Zhang, S., Wang, B., Liu, X., Wu, J., Williams, P.H. (2014) The bumblebees of North China (Apidae, Bombus Latreille). Zootaxa 3830. Archana, M.N., Archana, N.P. (2016) Glucose transporters: physiological and pathological roles. Biophys Rev 8 (1), 5–9. Arrese, E.L., Soulages, J.L. (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55, 207-225. Beall, C.M., Cavalleri, G.L., Deng, L., Elston, R.C., Gao, Y., et al. (2010) Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A 107 (25), 11459-11464. Becker, A., Schlöder, P., Steele, J.E., Wegener, G. (1996) The regulation of trehalose metabolism in insects. Experientia 52, 433-439. Beenakkers, A.M., VanderHorst, D.J., Marrewijk, W.J.A. (1984) Insect flight muscle metabolism. Insect Biochem 14 (3), 243-260. Berg, J.M., Tymoczko, J.L., Stryer, L. (2002) Glycolysis and Gluconeogenesis. Biochemistry, 5rd edn. W H Freeman, New York, Chapter 16. Bigham, A., Bauchet, M., Pinto, D., Mao, X., Akey, J.M., et al. (2010) Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet 6 (9), e1001116. Blatt, J., Roces, F. (2001) Haemolymph sugar levels in foraging honeybees (Apis mellifera carnica): dependence on metabolic rate and in vivo measurement of maximal rates of trehalose synthesis. J Exp Biol 204 (Pt15), 2709-2716. Brahimi-Horn, M.C., Chiche, J., Pouyssegur, J. (2007) Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19 (2), 223-229. Dillon, M.E., Dudley, R. (2014) Surpassing Mt. Everest: extreme flight performance of alpine bumble-bees. Biol Lett 10 (2), 20130922. Dillon, M.E., Frazier, M.R. (2006) Drosophila melanogaster locomotion in cold thin air. J Exp Biol 209 (Pt2), 364-371. Dillon, M.E., Frazier, M.R., Dudley, R. (2006) Into thin air: Physiology and evolution of alpine insects. Integr Comp Biol 46 (1), 49-61. Feyereisen, R. (1999) Insect P450 enzymes. Annu Rev Entomol 44, 507-533. Galen, S.C., Natarajan, C., Moriyama, H., Weber, R.E., Fago, A., Benham, P.M., Chavez, A.N., Cheviron, Z.A., Storz, J.F., Witt, C.C. (2015) Contribution of a mutational hot spot to hemoglobin adaptation in high-altitude Andean house wrens. Proc Natl Acad Sci U S A 112 (45), 13958-13963. Gatenby, R.A., Gillies, R.J. (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4 (11), 891-899. Ge, R.L., Cai, Q., Shen, Y.Y., San, A., Ma, L., et al. (2013) Draft genome sequence of the Tibetan antelope. Nat Commun: https://doi.org/10.1038/ncomms2860. Ghabrial, A., Luschnig, S., Metzstein, M.M., Krasnow, M.A. (2003) Branching morphogenesis of the Drosophila tracheal system. Annu Rev Cell Dev Biol 19, 623-647. Gmeinbauer, R., Crailsheim, K. (1993) Glucose utilization during flight of honeybee (Apis mellifera) workers, drones and queens. J Insect Physiol 39 (11), 959–967. Gou, X., Wang, Z., Li, N., Qiu, F., Xu, Z., et al. (2014) Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res 24 (8), 1308-1315. Harrison, J.F., Roberts, S.P. (2000) Flight respiration and energetics. Annu Rev Physiol 62, 179-205. Hodkinson, I.D. (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev Camb Philos Soc 80 (3), 489-513. Huang, J., An, J. (2018) Species diversity, pollination application and strategy for conservation of the bumblebees of China. Biodiversity Science 26 (5), 486-497. Huey, R.B., Kingsolver, J.G. (1989) Evolution of thermal sensitivity of ectotherm performance. Trends Ecol Evol 4 (5), 131-135. Josephson, R.K. (1981) Temperature and the mechanical performance of insect muscle. In: Insect Thermoregula tion (B. Heinrich, ed.), John Wiley, New York, pp. 19–44. Klip, A., Sun, Y., Chiu, T.T., Foley, K.P. (2014) Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J Physiol Cell Physiol 306 (10), C879-886. Liu, X., Zhang, Y., Li, Y., Pan, J., Wang, D., et al. (2019) EPAS1 Gain-of-Function Mutation Contributes to High-Altitude Adaptation in Tibetan Horses. Mol Biol Evol 36 (11), 2591–2603. Mani, M.S. (1968) The High Altitude Environment. In: Ecology and Biogeography of High Altitude Insects. Series Entomologica, vol 4. Springer, Dordrecht. Miyazawa, H., Yamaguchi, Y., Sugiura, Y., Honda, K., Kondo, K., Matsuda, F., Yamamoto, T., Suematsu, M., Miura, M. (2017) Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching. Development 144 (1), 63-73. Mor, I., Cheung, E.C., Vousden, K.H. (2011) Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb Symp Quant Biol 76, 211-216. Natarajan, C., Projecto-Garcia, J., Moriyama, H., Weber, R.E., Munoz-Fuentes, V., et al. (2015) Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level. PLoS Genet 11 (12), e1005681. Natarajan, C., Hoffmann, F.G., Weber, R.E., Fago, A., Witt, C.C., Storz, J.F. (2016) Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. Science 354 (6310), 336-339. Nunes, R.D., Romeiro, N.C., De Carvalho, H.T., Moreira, J.R., Sola-Penna, M., Silva-Neto, M.A., Braz, G.R. (2016) Unique PFK regulatory property from some mosquito vectors of disease, and from Drosophila melanogaster. Parasit Vectors, DOI: https://doi.org/10.1186/s13071-016-1391-y. Peng, Y., Yang, Z., Zhang, H., Cui, C., Qi, X., et al. (2011) Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol Biol Evol 28 (2), 1075-1081. Peng, Y., Cui, C., He, Y., Ouzhuluobu, Zhang, H., et al. (2017) Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Mol Biol Evol 34 (4), 818-830. Projecto-Garcia, J., Natarajan, C., Moriyama, H., Weber, R.E., Fago, A., Cheviron, Z.A., Dudley, R., McGuire, J.A., Witt, C.C., Storz, J.F. (2013) Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds. Proc Natl Acad Sci U S A 110 (51), 20669-20674. Qiu, Q., Zhang, G., Ma, T., Qian, W., Wang, J., et al. (2012) The yak genome and adaptation to life at high altitude. Nat Genet 44 (8), 946-949. Roy, R., Schmitt, A.J., Thomas, J.B., Carter, C.J. (2017) Review: Nectar biology: From molecules to ecosystems. Plant Sci 262, 148-164. Royden, L.H., Burchfiel, B.C., van der Hilst, R.D. (2008) The geological evolution of the Tibetan Plateau. Science 321 (5892), 1054-1058. Ruprecht, J.J., King, M.S., Zogg, T., Aleksandrova, A.A., Pardon, E., Crichton, P.G., Steyaert, J., Kunji, E.R.S. (2019) The Molecular Mechanism of Transport by the Mitochondrial ADP/ATP Carrier. Cell 176 (3), 435-447 e415. Sacktor, B. (1976) Biochemical adaptations for flight in the insect. Biochem Soc Symp, 41, 111-131. Sacktor, B., Wormser-Shavit, E. (1966) Regulation of metabolism in working muscle in vivo. I. Concentrations of some glycolytic, tricarboxylic acid cycle, and amino acid intermediates in insect flight muscle during flight. J Biol Chem 241 (3), 624-631. Sadd, B.M., Barribeau, S.M., Bloch, G., de Graaf, D.C., Dearden, P., et al. (2015) The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol, DOI: https://doi.org/10.1186/s13059-015-0623-3. Scaraffia, P.Y., Gerez de Burgos, N.M. (2000) Effects of temperature and pH on hexokinase from the flight muscles of Dipetalogaster maximus (Hemiptera: Reduviidae). J Med Entomol 37 (5), 689-694. Sharma, B. (2011) Kinetic Characterisation of Phosphofructokinase Purified from Setaria cervi: A Bovine Filarial Parasite. Enzyme Res, DOI: https://doi.org/10.4061/2011/939472. Simonson, T.S., Yang, Y., Huff, C.D., Yun, H., Qin, G., et al. (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329 (5987), 72-75. Suarez, R.K. (2000) Energy metabolism during insect flight: biochemical design and physiological performance. Physiol Biochem Zool. 73 (6), 765-771. Suarez, R.K., Darveau, C.A., Welch, K.C., Jr., O'Brien, D.M., Roubik, D.W., Hochachka, P.W. (2005) Energy metabolism in orchid bee flight muscles: carbohydrate fuels all. J Exp Biol 208 (Pt18), 3573-3579. Sylow, L., Jensen, T.E., Kleinert, M., Mouatt, J.R., Maarbjerg, S.J., Jeppesen, J., Prats, C., Chiu, T.T., Boguslavsky, S., Klip, A. (2013) Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle. Diabetes 62 (4), 1139-1151. Sylow, L., Kleinert, M., Pehmoller, C., Prats, C., Chiu, T.T., Klip, A., Richter, E.A., Jensen, T.E. (2014) Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell Signal 26 (2), 323-331. Sylow, L., Nielsen, I.L., Kleinert, M., Møller, L.L., Ploug, T., Schjerling, P., Bilan, P.J., Klip, A., Jensen, T.E., Richter, E.A. (2016) Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. J Physiol 594 (17), 4997-5008. Thaís, D.B., Thiago, G.P.A., Walter, R.T. (2010) Transporters involved in glucose and water absorption in the Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) anterior midgut. Comp Biochem Physiol B Biochem Mol Biol 157 (1), 1-9. Ueda, S., Kitazawa, S., Ishida, K., Nishikawa, Y., Matsui, M., et al. (2010) Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. FASEB J 24 (7), 2254-2261. Wigglesworth, V.B. (1972) The Principles of Insect Physiology. 8th Edition. Chapman and Hall, London, pp. 663-699. Williams, P.H., Ito, M., Matsumura, T., Kudo, I. (2010) The bumblebees of the Nepal Himalaya (Hymenoptera: Apidae). Insecta Matsumurana 66, 115-151. Williams, P.H., Huang, J., Rasmont, P., An, J. (2016) Early-diverging bumblebees from across the roof of the world: the high-mountain subgenus <i>Mendacibombus</i> revised from species' gene coalescents and morphology (Hymenoptera, Apidae). Zootaxa 4204. Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., Kong, L., Gao, G., Li, C.Y., Wei, L. (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39, W316-322. Xu, S., Li, S., Yang, Y., Tan, J., Lou, H., et al. (2011) A genome-wide search for signals of high-altitude adaptation in Tibetans. Mol Biol Evol 28 (2), 1003-1011. Yi, X., Liang, Y., Huerta-Sanchez, E., Jin, X., Cuo, Z.X., et al. (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329 (5987), 75-78. Zhang, W., Fan, Z., Han, E., Hou, R., Zhang, L., et al. (2014) Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau. PLoS Genet 10 (7), e1004466. Zhu, X., Guan, Y., Signore, A.V., Natarajan, C., DuBay, S.G., et al. (2018) Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. Proc Natl Acad Sci U S A 115 (8), 1865-1870.