Single-Cell Analyses Identify Brain Mural Cells Expressing CD19 as Potential Off-Tumor Targets for CAR-T Immunotherapies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bausch-Fluck, 2015, A mass spectrometric-derived cell surface protein atlas, PLoS ONE, 10, e0121314, 10.1371/journal.pone.0121314
Boroujerdi, 2014, Isolation and culture of primary pericytes from mouse brain, Methods Mol. Biol., 1135, 383, 10.1007/978-1-4939-0320-7_31
Braig, 2017, Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking, Blood, 129, 100, 10.1182/blood-2016-05-718395
Brentjens, 2003, Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15, Nat. Med., 9, 279, 10.1038/nm827
Brentjens, 2013, CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia, Sci. Transl. Med., 5, 177ra38, 10.1126/scitranslmed.3005930
Butler, 2018, Integrating single-cell transcriptomic data across different conditions, technologies, and species, Nat. Biotechnol., 36, 411, 10.1038/nbt.4096
Chasseigneaux, 2018, Isolation and differential transcriptome of vascular smooth muscle cells and mid-capillary pericytes from the rat brain, Sci. Rep., 8, 12272, 10.1038/s41598-018-30739-5
Crouch, 2018, FACS isolation of endothelial cells and pericytes from mouse brain microregions, Nat. Protoc., 13, 738, 10.1038/nprot.2017.158
Daneman, 2010, Pericytes are required for blood-brain barrier integrity during embryogenesis, Nature, 468, 562, 10.1038/nature09513
Dias, 2016, BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription, Am. J. Hum. Genet., 99, 253, 10.1016/j.ajhg.2016.05.030
Erdő, 2017, Age-associated physiological and pathological changes at the blood-brain barrier: A review, J. Cereb. Blood Flow Metab., 37, 4, 10.1177/0271678X16679420
Etchevers, 2001, The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain, Development, 128, 1059, 10.1242/dev.128.7.1059
Faal, 2019, Induction of Mesoderm and Neural Crest-Derived Pericytes from Human Pluripotent Stem Cells to Study Blood-Brain Barrier Interactions, Stem Cell Reports, 12, 451, 10.1016/j.stemcr.2019.01.005
Fedorov, 2013, PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses, Sci. Transl. Med., 5, 215ra172, 10.1126/scitranslmed.3006597
Gardner, 2017, Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults, Blood, 129, 3322, 10.1182/blood-2017-02-769208
Giavridis, 2018, CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade, Nat. Med., 24, 731, 10.1038/s41591-018-0041-7
Goebeler, 2016, Bispecific T-Cell Engager (BiTE) Antibody Construct Blinatumomab for the Treatment of Patients With Relapsed/Refractory Non-Hodgkin Lymphoma: Final Results From a Phase I Study, J. Clin. Oncol., 34, 1104, 10.1200/JCO.2014.59.1586
Gofshteyn, 2018, Neurotoxicity after CTL019 in a pediatric and young adult cohort, Ann. Neurol., 84, 537, 10.1002/ana.25315
Grupp, 2013, Chimeric antigen receptor-modified T cells for acute lymphoid leukemia, N. Engl. J. Med., 368, 1509, 10.1056/NEJMoa1215134
Gust, 2017, Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells, Cancer Discov., 7, 1404, 10.1158/2159-8290.CD-17-0698
Hodge, 2019, Conserved cell types with divergent features in human versus mouse cortex, Nature, 573, 61, 10.1038/s41586-019-1506-7
Kim, 2020, Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma, Nat. Commun., 11, 2285, 10.1038/s41467-020-16164-1
Klinger, 2020, Adhesion of T Cells to Endothelial Cells Facilitates Blinatumomab-Associated Neurologic Adverse Events, Cancer Res., 80, 91, 10.1158/0008-5472.CAN-19-1131
Kochenderfer, 2010, Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19, Blood, 116, 4099, 10.1182/blood-2010-04-281931
Korfel, 2013, Diagnosis and treatment of primary CNS lymphoma, Nat. Rev. Neurol., 9, 317, 10.1038/nrneurol.2013.83
Kozmik, 1992, The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP, Mol. Cell. Biol., 12, 2662, 10.1128/MCB.12.6.2662
Ku, 2018, Assessment of Blood Brain Barrier Leakage with Gadolinium-Enhanced MRI, Methods Mol. Biol., 1718, 395, 10.1007/978-1-4939-7531-0_23
La Manno, 2016, Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells, Cell, 167, 566, 10.1016/j.cell.2016.09.027
Lee, 2015, T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial, Lancet, 385, 517, 10.1016/S0140-6736(14)61403-3
Lin, 2018
Liu, 2003, Bcl11a is essential for normal lymphoid development, Nat. Immunol., 4, 525, 10.1038/ni925
Locke, 2017, Phase 1 Results of ZUMA-1: A Multicenter Study of KTE-C19 Anti-CD19 CAR T Cell Therapy in Refractory Aggressive Lymphoma, Mol. Ther., 25, 285, 10.1016/j.ymthe.2016.10.020
Lowe, 2018, Fludarabine and neurotoxicity in engineered T-cell therapy, Gene Ther., 25, 176, 10.1038/s41434-018-0019-6
Maecker, 1997, Normal lymphocyte development but delayed humoral immune response in CD81-null mice, J. Exp. Med., 185, 1505, 10.1084/jem.185.8.1505
Majzner, 2020, Tuning the Antigen Density Requirement for CAR T-cell Activity, Cancer Discov., 10, 702, 10.1158/2159-8290.CD-19-0945
Maude, 2018, Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia, N. Engl. J. Med., 378, 439, 10.1056/NEJMoa1709866
Miller, 2014, Transcriptional landscape of the prenatal human brain, Nature, 508, 199, 10.1038/nature13185
Milone, 2009, Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo, Mol. Ther., 17, 1453, 10.1038/mt.2009.83
Miyazaki, 1997, Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81, EMBO J., 16, 4217, 10.1093/emboj/16.14.4217
Nagorsen, 2012, Blinatumomab: a historical perspective, Pharmacol. Ther., 136, 334, 10.1016/j.pharmthera.2012.07.013
Neelapu, 2019, Managing the toxicities of CAR T-cell therapy, Hematol. Oncol., 37, 48, 10.1002/hon.2595
Neelapu, 2017, Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma, N. Engl. J. Med., 377, 2531, 10.1056/NEJMoa1707447
Park, 2018, Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia, N. Engl. J. Med., 378, 449, 10.1056/NEJMoa1709919
Pennell, 2018, Human CD19-Targeted Mouse T Cells Induce B Cell Aplasia and Toxicity in Human CD19 Transgenic Mice, Mol. Ther., 26, 1423, 10.1016/j.ymthe.2018.04.006
Porter, 2011, Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia, N. Engl. J. Med., 365, 725, 10.1056/NEJMoa1103849
Quah, 2007, Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester, Nat. Protoc., 2, 2049, 10.1038/nprot.2007.296
Radu, 2013, An in vivo assay to test blood vessel permeability, J. Vis. Exp., 73
Roybal, 2016, Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits, Cell, 164, 770, 10.1016/j.cell.2016.01.011
Ruella, 2018, Predicting Dangerous Rides in CAR T Cells: Bridging the Gap between Mice and Humans, Mol. Ther., 26, 1401, 10.1016/j.ymthe.2018.05.005
Salter, 2018, Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function, Sci. Signal., 11, 10.1126/scisignal.aat6753
Schuster, 2017, Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas, N. Engl. J. Med., 377, 2545, 10.1056/NEJMoa1708566
Shoham, 2003, The tetraspanin CD81 regulates the expression of CD19 during B cell development in a postendoplasmic reticulum compartment, J. Immunol., 171, 4062, 10.4049/jimmunol.171.8.4062
Sommermeyer, 2017, Fully human CD19-specific chimeric antigen receptors for T-cell therapy, Leukemia, 31, 2191, 10.1038/leu.2017.57
Sotillo, 2015, Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy, Cancer Discov., 5, 1282, 10.1158/2159-8290.CD-15-1020
Sweeney, 2019, Blood-Brain Barrier: From Physiology to Disease and Back, Physiol. Rev., 99, 21, 10.1152/physrev.00050.2017
2018, Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris, Nature, 562, 367, 10.1038/s41586-018-0590-4
Juno Therapeutics, a Subsidiary of Celgene
Torre, 2018, Neuropathology of a Case With Fatal CAR T-Cell-Associated Cerebral Edema, J. Neuropathol. Exp. Neurol., 77, 877, 10.1093/jnen/nly064
Travaglini, 2020, A molecular cell atlas of the human lung from single cell RNA sequencing, bioRxiv
Tsitsikov, 1997, Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice, Proc. Natl. Acad. Sci. USA, 94, 10844, 10.1073/pnas.94.20.10844
Turtle, 2016, Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor–modified T cells, Sci. Transl. Med., 8, 10.1126/scitranslmed.aaf8621
Turtle, 2016, CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients, J. Clin. Invest., 126, 2123, 10.1172/JCI85309
Turtle, 2017, Durable Molecular Remissions in Chronic Lymphocytic Leukemia Treated With CD19-Specific Chimeric Antigen Receptor-Modified T Cells After Failure of Ibrutinib, J. Clin. Oncol., 35, 3010, 10.1200/JCO.2017.72.8519
Uemura, 2020, Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia, Front. Aging Neurosci., 12, 80, 10.3389/fnagi.2020.00080
Urbánek, 1997, Cooperation of Pax2 and Pax5 in midbrain and cerebellum development, Proc. Natl. Acad. Sci. USA, 94, 5703, 10.1073/pnas.94.11.5703
van Vliet, 2014, Longitudinal assessment of blood-brain barrier leakage during epileptogenesis in rats. A quantitative MRI study, Neurobiol. Dis., 63, 74, 10.1016/j.nbd.2013.11.019
van Zelm, 2010, CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency, J. Clin. Invest., 120, 1265, 10.1172/JCI39748
Vanlandewijck, 2018, A molecular atlas of cell types and zonation in the brain vasculature, Nature, 554, 475, 10.1038/nature25739
Wolf, 2018, SCANPY: large-scale single-cell gene expression data analysis, Genome Biol., 19, 15, 10.1186/s13059-017-1382-0
Wolock, 2019, Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data, Cell Syst., 8, 281, 10.1016/j.cels.2018.11.005
Yang, 2020, Physiological blood-brain transport is impaired with age by a shift in transcytosis, Nature, 583, 425, 10.1038/s41586-020-2453-z
Ying, 2019, A safe and potent anti-CD19 CAR T cell therapy, Nat. Med., 25, 947, 10.1038/s41591-019-0421-7
Zheng, 2017, Massively parallel digital transcriptional profiling of single cells, Nat. Commun., 8, 14049, 10.1038/ncomms14049