Speckle-Tracking Echocardiography Enables Model-Based Identification of Regional Stiffness Indices in the Left Ventricular Myocardium

Springer Science and Business Media LLC - Tập 11 - Trang 176-187 - 2020
William M. Torres1,2, Francis G. Spinale1,2, Tarek Shazly1
1College of Engineering and Computing, University of South Carolina, Columbia, USA
2Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Healthcare Center, Columbia, USA

Tóm tắt

Left ventricular (LV) remodeling is a critical process underlying heart failure (HF) development and progression. While LV global longitudinal strain determined by speckle-tracking echocardiography (STE) provides a promising basis to monitor LV remodeling, reported strain measures are limited by the masking of regional differences and a dependency on hemodynamic load. Our goal is to extend two-dimensional STE to enhance regional mechanical assessment of the LV myocardium—providing clinically accessible and load-independent response variables that directly reflect the LV remodeling process. An inverse finite element analysis was employed with a pattern search optimization algorithm to identify regional indices of LV myocardial stiffness based on STE-derived regional LV longitudinal strains and wall geometries. Our framework was applied in two distinct porcine models of early LV remodeling, specifically following myocardial infarction and onset of LV pressure overload. Regional and temporal changes in computed indices of LV myocardial stiffness over diastolic pressures correlate with conventional indices of LV remodeling and show enhanced early sensitivity as compared to LV global longitudinal strain. Our findings suggest that STE-integrated computational modeling can be used to track indices of LV myocardial stiffness and, thus, is a potential tool for HF diagnosis and prognosis.

Tài liệu tham khảo

Barlow, S. C., H. Doviak, J. Jacobs, L. A. Freeburg, P. E. Perreault, K. N. Zellars, et al. Intracoronary delivery of recombinant TIMP-3 after myocardial infarction: effects on myocardial remodeling and function. Am J Physiol 313:H690–H699, 2017. https://doi.org/10.1152/ajpheart.00114.2017. Blessberger, H., and T. Binder. Non-invasive imaging: two dimensional speckle tracking echocardiography: basic principles. Heart 96:716–722, 2010. Burns, A. T., G. A. La, J. D’hooge, A. I. Macisaac, and D. L. Prior. Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur. J. Echocardiogr. 11:283–289, 2010. Carew, T. E., and J. W. Covell. Fiber orientation in hypertrophied canine left ventricle. Am. J. Physiol. Heart Circ. Physiol. 236:H487–H493, 1979. Choi, J. O., S. W. Cho, Y. B. Song, S. J. Cho, B. G. Song, S. C. Lee, et al. Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality. Eur. J. Echocardiogr. 10:695–701, 2009. Clarke, S. A. Anisotropic Reinforcement Following Myocardial Infarction. Charlottesville: University of Virginia, 2015. Clarke, S. A., N. C. Goodman, G. Ailawadi, and J. W. Holmes. Effect of scar compaction on the therapeutic efficacy of anisotropic reinforcement following myocardial infarction in the dog. J. Cardiovasc. Transl. Res. 8:353–361, 2015. Cohn, J. N., R. Ferrari, and N. Sharpe. Cardiac remodeling-concepts and clinical implications: a consensus paper from an International Forum on Cardiac Remodeling. J. Am. Coll. Cardiol. 35:569–582, 2000. Costa, K. D., K. May-Newman, D. Farr, A. D. O’Dell, W. G. McCulloch, and J. H. Omens. Three-dimensional residual strain in midanterior canine left ventricle. Am J Physiol. 273:1968–1976, 1997. Dorri, F., P. F. Niederer, and P. P. Lunkenheimer. A finite element model of the human left ventricular systole. Comput. Methods Biomech. Biomed. Eng. 9:319–341, 2006. Ertl, G., and S. Frantz. Adverse cardiac remodeling: phosphoinositide 3-kinase, another unique factor in a multifactorial condition. Circulation 126:2175–2176, 2012. Farsalinos, K. E., A. M. Daraban, S. Ünlü, J. D. Thomas, L. P. Badano, and J. U. Voigt. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE Inter-Vendor Comparison Study. J. Am. Soc. Echocardiogr. 28:1171–1181, 2015. Freedman, B. R., N. D. Bade, C. N. Riggin, S. Zhang, P. G. Haines, K. L. Ong, et al. The (dys)functional extracellular matrix. Biochim. Biophys. Acta 1853:3153–3164, 2015. Gaasch, W. H., and M. R. Zile. Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry. J. Am. Coll. Cardiol. 58:1733–1740, 2011. Goktepe, S., S. N. S. Acharya, J. Wong, and E. Kuhl. Computational Modeling of passive myocardium. Int. J. Num. Method Biomed. Eng. 27:1–12, 2010. Gupta, K. B., M. B. Ratcliffe, M. A. Fallert, L. H. Edmunds, and D. K. Bogen. Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89:2315–2326, 1994. Hayashida, W., C. Van Eyll, M. F. Rousseau, H. Pouleur, and The SOLVD Investigators. Regional remodeling and nonuniform changes in diastolic function in patients with left ventricular dysfunction: modification by long-term enalapril treatment. J. Am. Coll. Cardiol. 22:1403–1410, 1993. Hess, O. M., R. Koch, C. Bamert, H. P. Krayenbuehl, and M. Policlinic. Regional wall stiffness during acute myocardial ischaemia in the canine left ventricle*. Eur. Heart J. 1:435–444, 1980. Holmes, J. W., T. K. Borg, and J. W. Covell. Structure and mechanics of healing myocardial infarcts. Annu. Rev. Biomed. Eng. 7:223–253, 2005. Jacot, J. G., A. D. McCulloch, and J. H. Omens. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95:3479–3487, 2008. Janicki, J. S., G. L. Brower, J. D. Gardner, A. L. Chancey, and J. A. Stewart. The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Fail. Rev. 9:33–42, 2004. Klepach, D., L. C. Lee, J. F. Wenk, M. B. Ratcliffe, T. I. Zohdi, J. L. Navia, et al. Growth and remodeling of the left ventricle: a case study of myocardial infarction and surgical ventricular restoration. Mech. Res. Commun. 42:134–141, 2012. Kouzu, H., S. Yuda, A. Muranaka, T. Doi, H. Yamamoto, S. Shimoshige, et al. Left ventricular hypertrophy causes different changes in longitudinal, radial, and circumferential mechanics in patients with hypertension: a two-dimensional speckle tracking study. J. Am. Soc. Echocardiogr. 24:192–199, 2011. https://doi.org/10.1016/j.echo.2010.10.020. Lang, R. M., L. P. Badano, V. Mor-Avi, J. Afilalo, A. Armstrong, L. Ernande, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur. Heart J. Cardiovasc. Imaging 16:233–271, 2015. https://doi.org/10.1016/j.echo.2014.10.003. Leitman, M., P. Lysyansky, S. Sidenko, V. Shir, E. Peleg, M. Binenbaum, et al. Two-dimensional strain—a novel software for real-time quantitative echocardiographic assessment of myocardial function. J. Am. Soc. Echocardiogr. 17:1021–1029, 2004. Maas, S. A., B. J. Ellis, G. A. Ateshian, and J. A. Weiss. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134:011005, 2012. McKay, R. G., M. A. Pfeffer, R. C. Pasternak, J. E. Markis, P. C. Come, S. Nakao, et al. Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 74:693–702, 1986. Mirea, O., J. Duchenne, and J.-U. Voigt. Recent advances in echocardiography: strain and strain rate imaging. F1000Research 5:787, 2016. Moerman, K. Gibbon: the geometry and image-based bioengineering add-on. J. Open Source Softw. 3:506, 2018. https://doi.org/10.21105/joss.00506. Nagueh, S. F., K. J. Middleton, H. A. Kopelen, W. A. Zoghbi, and M. A. Quiñones. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J. Am Coll. Cardiol. 30:1527–1533, 1997. Omens, J. H., T. R. Miller, and J. W. Covell. Relationship between passive tissue strain and collagen uncoiling during healing of infarcted myocardium. Cardiovasc. Res. 33:351–358, 1997. Ommen, S. R., R. A. Nishimura, C. P. Appleton, F. A. Miller, J. K. Oh, M. M. Redfield, et al. Clinical utility of doppler echocardiography and tissue doppler imaging in the estimation of left ventricular filling pressures : a comparative simultaneous doppler-catheterization study. Circulation 102:1788–1794, 2000. https://doi.org/10.1161/01.CIR.102.15.1788. Palit, A., S. K. Bhudia, T. N. Arvanitis, G. A. Turley, and M. A. Williams. Computational modelling of left-ventricular diastolic mechanics : Effect of fibre orientation and right-ventricle topology. J. Biomech. 2015. https://doi.org/10.1016/j.jbiomech.2014.12.054. Park, T., S. F. Nagueh, D. S. Khoury, H. A. Kopelen, S. Akrivakis, K. Nasser, et al. Impact of myocardial structure and function postinfarction on diastolic strain measurements: implications for assessment of myocardial viability. Am. J. Physiol. 77030:724–731, 2005. Park, D. W., A. Sebastiani, C. H. Yap, M. A. Simon, and K. Kim. Quantification of coupled stiffness and fiber orientation remodeling in hypertensive rat right-ventricular myocardium using 3D ultrasound speckle tracking with biaxial testing. PLoS ONE 11:1–16, 2016. Pernot, M., W. N. Lee, A. Bel, P. Mateo, M. Couade, M. Tanter, et al. Shear wave imaging of passive diastolic myocardial stiffness: stunned versus infarcted myocardium. JACC Cardiovasc. Imaging. 9:1023–1030, 2016. Phan, T. T., G. N. Shivu, K. Abozguia, M. Gnanadevan, I. Ahmed, and M. Frenneaux. Left ventricular torsion and strain patterns in heart failure with normal ejection fraction are similar to age-related changes. Eur. J. Echocardiogr. 10:793–800, 2009. Picard, M. H., D. Adams, S. M. Bierig, J. M. Dent, P. S. Douglas, L. D. Gillam, et al. American Society of echocardiography recommendations for quality echocardiography laboratory operations. J. Am. Soc. Echocardiogr. 24:930, 2011. https://doi.org/10.1016/j.echo.2010.11.006. Romito, E., T. Shazly, and F. G. Spinale. In vivo assessment of regional mechanics post-myocardial infarction: a focus on the road ahead. J. Appl. Physiol. 123:728–745, 2017. Spinale, F. G., R. Mukherjee, J. A. Zavadzkas, C. N. Koval, S. Bouges, R. E. Stroud, et al. Cardiac restricted overexpression of membrane type-1 matrix metalloproteinase causes adverse myocardial remodeling following myocardial infarction. J. Biol. Chem. 285:30316–30327, 2010. Stanton, T., R. Leano, and T. H. Marwick. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ. Cardiovasc. Imaging. 2:356–364, 2009. Torres, W. M., J. Jacobs, H. Doviak, S. C. Barlow, M. R. Zile, T. Shazly, et al. Regional and temporal changes in left ventricular strain and stiffness in a porcine model of myocardial infarction. Am. J. Physiol. Circ. Physiol. 2018. https://doi.org/10.1152/ajpheart.00279.2018. Villemain, O., M. Correia, E. Mousseaux, J. Baranger, S. Zarka, I. Podetti, et al. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults. JACC Cardiovasc. Imaging. 12:1135–1145, 2018. Weisman, H. F., D. E. Bush, J. A. Mannisi, and B. H. Bulkley. Global cardiac remodeling after acute myocardial infarction: a study in the rat model. J. Am. Coll. Cardiol. 5:1355–1362, 1985. Weiss, J. A., B. N. Maker, and S. Govindjee. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Eng. 135:107–128, 1996. Yarbrough, W. M., C. Baicu, R. Mukherjee, A. Van Laer, W. T. Rivers, R. A. McKinney, et al. Cardiac-restricted overexpression or deletion of tissue inhibitor of matrix metalloproteinase-4: differential effects on left ventricular structure and function following pressure overload-induced hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 307:H752–H761, 2014. Yarbrough, W. M., R. Mukherjee, T. A. Brinsa, K. B. Dowdy, A. A. Scott, G. P. Escobar, et al. Matrix metalloproteinase inhibition modifies left ventricular remodeling after myocardial infarction in pigs. J. Thorac. Cardiovasc. Surg. 125:602–610, 2003. Yarbrough, W. M., R. Mukherjee, R. E. Stroud, W. T. Rivers, J. M. Oelsen, J. A. Dixon, et al. Progressive induction of left ventricular pressure overload in a large animal model elicits myocardial remodeling and a unique matrix signature. J. Thorac. Cardiovasc. Surg. 143:215–223, 2012. https://doi.org/10.1016/j.jtcvs.2011.09.032. Yin, F. C., H. A. Spurgeon, M. L. Weisfeldt, and E. G. Lakatta. Mechanical properties of myocardium from hypertrophied rat hearts. A comparison between hypertrophy induced by senescence and by aortic banding. Circ Res. 46:292–300, 1980.