Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells
Tóm tắt
The hydrogel based system is found to be rarely reported for the delivery of hydrophobic drug due to the incompatibility of hydrophilicity of the polymer network and the hydrophobicity of drug. This problem can be solved by preparing semi-interpenetrating network of cross-linked polymer for tuning the hydrophilicity so as to entrap the hydrophobic drugs. The current study is to develop a folic acid conjugated cross-linked pH sensitive, biocompatible polymeric hydrogel to achieve a site specific drug delivery. For that, we have synthesized a folic acid conjugated PEG cross-linked acrylic polymer (FA-CLAP) hydrogel and investigated its loading and release of curcumin. The formed polymer hydrogel was then conjugated with folic acid for the site specific delivery of curcumin to cancer cells and then further characterized and conducted the cell uptake and cytotoxicity studies on human cervical cancer cell lines (HeLa). In this study, we synthesized folic acid conjugated cross-linked acrylic hydrogel for the delivery of hydrophobic drugs to the cancer site. Poly (ethyleneglycol) (PEG) diacrylate cross-linked acrylic polymer (PAA) was prepared via inverse emulsion polymerization technique and later conjugated it with folic acid (FA-CLAP). Hydrophobic drug curcumin is entrapped into it and investigated the entrapment efficiency. Characterization of synthesized hydogel was done by using Fourier Transform-Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC). Polymerization and folate conjugation was confirmed by FT-IR spectroscopy. The release kinetics of drug from the entrapped form was studied which showed initial burst release followed by sustained release due to swelling and increased cross-linking. In vitro cytotoxicity and cell uptake studies were conducted in human cervical cancer (HeLa) cell lines. Results showed that curcumin entrapped folate conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel showed higher cellular uptake than the non folate conjugated form. So this can be suggested as a better delivery system for site specific release of hydrophobic cancer drugs.
Tài liệu tham khảo
Patel HB, Patel HL, Shah ZH, Modasiya MK: Review on hydrogel nanoparticles in drug delivery. Am J Pharm Res. 2011, 1: 19-38.
Kim IS, Jeong YI, Kim DH, Lee YH, Kim SH: Albumin release from biodegradable hydrogels composed of dextran and poly (ethylene glycol) macromer. Arch Pharm Res. 2001, 24: 69-73.
Hamidi M, Azadi A, Rafiei P: Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008, 60: 1638-1649.
Ratner BD, Hoffman AS: Synthetic Hydrogels for Biomedical Applications. Hydrogels for Medical and Related Applications. 31st edition. Edited by: Andrade JD. Washington DC: ACS Symposium Series, American Chemical Society, 1976, 1-36.
Blanco MD, García O, Trigo RM, Teijón JM, Katime I: 5-Fluorouracil release from copolymeric hydrogels of itaconic acid monoester: I. Acrylamide-co-monomethyl itaconate. Biomaterials. 1996, 17: 1061-1067.
Chen R, Chen Q, Huo D, Ding Y, Hu Y, Jiang X: In situ formation of chitosan-gold hybrid hydrogel and its application for drug delivery. Colloids Surf B: Biointerfaces. 2012, 97: 132-137.
Liu Y, Chan-Park MB: Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials. 2009, 30: 196-207.
Deepa G, Thulasidasan A, Anto RJ, Pillai JJ, Kumar GSV: Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy. Int J Nanomedicine. 2012, 7: 4077-4088.
Xiao W, Liu W, Sun J, Dan X, Wei D, Fan H: Ultrasonication and Genipin Cross-Linking to Prepare Novel Silk Fibroin–Gelatin Composite Hydrogel. J Bioact Compat Polym. 2012, 27: 327-341.
Seliktar D: Designing Cell-Compatible Hydrogels for Biomedical Applications. Science. 2012, 336: 1124-1128.
Zhang L, Jeong Y, Zheng S, Jang S, Suh H, Kang DH, Kim : Biocompatible and pH-sensitive PEG hydrogels with degradable phosphoester and phosphoamide linkers end-capped with amine for controlled drug delivery. Polym Chem. 2013, 4: 1084-1094.
Khare AR, Peppas NA: Swelling/deswelling of anionic copolymer gels. Biomaterials. 1995, 16: 559-567.
Patenaude M, Hoare T: Injectable, mixed natural-synthetic polymer hydrogels with modular properties. Biomacromolecules. 2012, 13: 369-378.
Burugapalli K, Bhatia D, Koul V, Choudhary V: Interpenetrating polymer networks based on poly (acrylic acid) and gelatin I: swelling and thermal behavior. J Appl Polym Sci. 2001, 82: 217-227.
Soppimath K, Aminabhavi T, Dave A, Kumbar S, Rudzinski W: Stimulus-responsive “Smart” hydrogels as novel drug delivery systems*. Drug Dev Ind Pharm. 2002, 28: 957-974.
Gao X, He C, Xiao C, Zhuang X, Chen X: Synthesis and characterization of biodegradable pH-sensitive poly (acrylic acid) hydrogels crosslinked by 2-hydroxyethyl methacrylate modified poly (L-glutamic acid). Mater Lett. 2012, 77: 74-77.
Gupta P, Vermani K, Garg S: Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002, 7: 569-579.
Hennink W, Van Nostrum C: Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2002, 54: 13-36.
Kuttan R, Bhanumathy P, Nirmala K, George M: Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett. 1985, 29: 197-202.
Shishodia S, Sethi G, Aggarwal BB: Curcumin: getting back to the roots. Ann N Y Acad Sci. 2005, 1056: 206-217.
Strimpakos AS, Sharma RA: Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxidants Redox Signaling. 2008, 10: 511-546.
Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB: Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 2008, 267: 133-164.
Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR: ApoE3 mediated polymeric nanoparticles containing curcumin: Apoptosis induced in vitro anticancer activity against neuroblastoma cells. Int J Pharm. 2012, 437: 29-41.
Tuttle S, Hertan L, Daurio N, Porter S, Kaushic C, Li D, Myamoto S, Lin A, O’ Malley BW, Koumenis C: The chemopreventive and clinically used agent curcumin sensitizes HPV-but not HPV+ HNSCC to ionizing radiation, in vitro and in a mouse orthotopic model. Canc Biol Ther. 2012, 13: 0-1.
Chuang S, Kuo M, Hsu C, Chen C, Lin J, Lai G, Hsieh C, Cheng A: Curcumin-containing diet inhibits diethylnitrosamine-induced murine hepatocarcinogenesis. Carcinogenesis. 2000, 21: 331-335.
Kawamori T, Lubet R, Steele VE, Kelloff GJ, Kaskey RB, Rao CV, Reddy BS: Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res. 1999, 59: 597-
Inano H, Onoda M, Inafuku N, Kubota M, Kamada Y, Osawa T, Kobayashi H, Wakabayashi K: Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with γ-rays. Carcinogenesis. 1999, 20: 1011-1018.
Singh SV, Hu X, Srivastava SK, Singh M, Xia H, Orchard JL, Zaren HA: Mechanism of inhibition of benzo [a] pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis. 1998, 19: 1357-1360.
Li N, Chen X, Liao J, Yang G, Wang S, Josephson Y, Han C, Chen J, Huang MT, Yang CS: Inhibition of 7, 12-dimethylbenz [a] anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis. 2002, 23: 1307-1313.
Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J: Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006, 6: 2427-2430.
Nair KL, Sankar J, Nair AS, Kumar GSV: Evaluation of triblock copolymeric micelles of δ-valerolactone and poly (ethylene glycol) as a competent vector for doxorubicin delivery against cancer. J Nanobiotechnology. 2011, 9: 42-
Lilach V, Itai B: In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines. J Nanobiotechnology. 2011, 9: 58-
Mehmet HU, Seta K, Bernhard S, Uwe BS: Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. J Nanobiotechnology. 2013, 11: 37-
Deepa G, Ashwanikumar N, Pillai JJ, Kumar GSV: Polymer nanoparticles-a novel strategy for administration of paclitaxel in cancer chemotherapy. Curr Med Chem. 2012, 19: 6207-6213.
Blanco MD, Guerrero S, Benito M, Fernández A, Teijón C, Olmo R, Katime I, Teijón JM: In vitro and in vivo evaluation of a folate-targeted copolymeric submicrohydrogel based on n-isopropylacrylamide as 5-fluorouracil delivery system. Polymers. 2011, 3: 1107-1125.
Roger E, Kalscheuer S, Kirtane A, Guru BR, Grill AE, Whittum-Hudson J, Panyam J: Folic acid-functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm. 2012, 9: 2103-2110.
Kumar M, Singh G, Arora V, Mewar S, Sharma U, Jagannathan N, Sapra S, Dinda A, Kharbanda S, Singh H: Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells. Int J Nanomedicine. 2012, 7: 3503-3516.
Choi SK, Thomas TP, Li MH, Desai A, Kotlyar A, Baker JR: Photochemical release of methotrexate from folate receptor-targeting PAMAM dendrimer nanoconjugate. Photochem Photobiol Sci. 2012, 11: 653-660.
Vanderhoff J, Bradford E, Tarkowski H, Shaffer J, Wiley R: Inverse emulsion polymerization. Adv Chem. 1962, 34: 32-51.
Ravichandran P, Shantha KL, Rao KP: Preparation, swelling characteristics and evaluation of hydrogels for stomach specific drug delivery. Int J Pharm. 1997, 154: 89-94.
Huang H, Yuan Q, Shah JS, Misra RDK: A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv Drug Deliv Rev. 2011, 63: 1332-1339.
Glavas-Dodov M, Goracinova K, Mladenovska K, Fredro-Kumbaradzi E: Release profile of lidocaine HCl from topical liposomal gel formulation. Int J Pharm. 2002, 242: 381-384.
Qiu Y, Park K: Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001, 53: 321-339.
Anto RJ, Venkatraman M, Karunagaran D: Inhibition of NF- B sensitizes A431 cells to epidermal growth factor-induced apoptosis, whereas its activation by ectopic expression of RelA confers resistance. J Biol Chem. 2003, 278: 25490-25498.
Ribble D, Goldstein NB, Norris DA, Shellman YG: A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol. 2005, 5: 12-