Influence of fibers partially coated with rubber from tire recycling as aggregate on the acoustical properties of rubberized concrete

Construction and Building Materials - Tập 129 - Trang 25-36 - 2016
Nelson Flores Medina1,2, Darío Flores-Medina3, F. Hernández-Olivares1
1Departamento de Construcción y Tecnología Arquitectónicas, E.T.S. Arquitectura, Universidad Politécnica de Madrid, Avda. Juan de Herrera 4, 28040 Madrid, Spain
2E.T.S. Arquitectura, Universidad Europea de Canarias, Inocencio García 1, 38300 La Orotava, Spain
3Facultad de Educación Ciencia y Tecnología (FECYT), Carrera de Diseño Gráfico, Universidad Técnica del Norte, Ecuador

Tài liệu tham khảo

European Tyre and Rubber Manufacture’s Association, <http://www.etrma.org/>. Adhikari, 2000, Reclamation and recycling of waste rubber, Prog. Polym. Sci., 25, 909, 10.1016/S0079-6700(00)00020-4 European Tire Recycling Association (ETRA), <http://www.etra-eu.org/joomla/libraries/articles/ETRA%20Introduction001.pdf>. Flores, 2014, Static Mechanical properties of waste rests of recycled rubber and high quality recycled rubber from crumbed tyres used as aggregate in dry consistency concrete, Mater. Struct., 47, 1185, 10.1617/s11527-013-0121-6 Papakonstantinou, 2006, Use of waste tire steel beads in Portland cement concrete, Cem. Concr. Res., 36, 1686, 10.1016/j.cemconres.2006.05.015 Sobral, 2003, Mechanical and Acoustical characteristics of bound rubber granulate, J. Mater. Process. Technol., 142, 427, 10.1016/S0924-0136(03)00623-X Hernández-Olivares, 2002, Static and dynamic behaviour of recycled tire rubber-filled concrete, Cem. Concr. Res., 32, 1587, 10.1016/S0008-8846(02)00833-5 Atahan, 2012, Crumb rubber in concrete: static and dynamic evaluation, Constr. Build. Mater., 36, 617, 10.1016/j.conbuildmat.2012.04.068 Topçu, 2009, Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete, Mater. Des., 30, 3056, 10.1016/j.matdes.2008.12.011 Najim, 2010, A review of the fresh/hardened properties and applications for plain- (PRC)and self-compacting rubberized concrete (SCRC), Constr. Build. Mater., 24, 2043, 10.1016/j.conbuildmat.2010.04.056 Guo, 2014, Fracture behaviors of a new steel fiber reinforced recycled aggregate concrete with crumb rubber, Constr. Build. Mater., 53, 32, 10.1016/j.conbuildmat.2013.11.075 Ekopan. New Enviro-friendly absorbent acoustic panels. Eco-Innovation, <http://ec.europa.eu/environment/eco-innovation/projects/en/projects/ekopan>. Insul-eco. Eco-innovative insulating thermal and acoustic panels made with recycled textile fibres, <http://ec.europa.eu/environment/eco-innovation/projects/en/projects/insul-eco>. Ruconbar, Rubberized concrete noise barriers, <http://ec.europa.eu/environment/eco-innovation/projects/en/projects/Ruconbar>. Aliabdo, 2015, Utilization of waste rubber in non-structural applications, Constr. Build. Mater., 91, 195, 10.1016/j.conbuildmat.2015.05.080 Sukontasukkul, 2009, Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel, Constr. Build. Mater., 23, 1084, 10.1016/j.conbuildmat.2008.05.021 Aiello, 2009, Use of steel fibres recovered from waste tires as reinforcement in concrete: pull-out behaviour. compressive and flexural strength, Waste Manage., 29, 1960, 10.1016/j.wasman.2008.12.002 Holmes, 2014, Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement, Constr. Build. Mater., 73, 195, 10.1016/j.conbuildmat.2014.09.107 Neithalath, 2005, Modeling the effects of pore structure on the acoustic absorption of Enhanced Porosity Concrete, J. Adv. Concr. Technol., 3, 29, 10.3151/jact.3.29 Crocker, 2007, Use of sound-absorbing materials Turgut, 2008, Physico-mechanical and thermal performances of newly developed rubber-added bricks, Energy Build., 40, 679, 10.1016/j.enbuild.2007.05.002 Marolf, 2004, The influence of aggregate gradation on the acoustic absorption of Enhanced Porosity Concrete, ACI Mater. J., 101, 82 Park, 2005, Studies on the sound absorption characteristics of porous concrete based on the content of recycled aggregate and target void ratio, Cem. Concr. Res., 35, 1846, 10.1016/j.cemconres.2004.12.009 Kim, 2010, Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete, Appl. Acoust., 71, 607, 10.1016/j.apacoust.2010.02.001 Sgard, 2005, On the use of perforations to improve the sound absorption of porous materials, Appl. Acoust., 66, 625, 10.1016/j.apacoust.2004.09.008 Angelin, 2015, Effects of spheroids and fiber-like waste-tire rubbers on interrelation of strength-to-porosity in rubberized cement and mortar, Constr. Build. Mater., 95, 525, 10.1016/j.conbuildmat.2015.07.166 Zhang, 2015, Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cem. Concr. Compos., 62, 97, 10.1016/j.cemconcomp.2015.03.013 Carl Hopkins, Sound Insulation. Elsevier, 2007. ISBN:978-0-7506-6526-1. Paje, 2009, Toward the acoustical characterization of asphalts pavements: analysis of the tyre/road sound from a porous surface (L), J. Acoust. Soc. Am., 125, 5, 10.1121/1.3025911 Paje, 2008, Assessment of asphalt concrete acoustic performance in urban streets, J. Acoust. Soc. Am., 123, 1439, 10.1121/1.2828068 Crocker, 2005, Measurements of tyre/road noise and of acoustical properties of porous road surfaces, Int. J. Acoust. Vibr., 10, 52 Bueno, 2014, Macrotexture influence on vibrational mechanisms of the tyre-road noise on asphalt, Int. J. Pave. Eng., 15, 10.1080/10298436.2013.790547 Pfretzschner, 1996 Pastor, 2014, Glass reinforced concrete panels containing recycled tyres: evaluation of the acoustic properties of for their use as sound barriers, Constr. Build. Mater., 54, 541, 10.1016/j.conbuildmat.2013.12.040 Herrero, 2013, Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster-rubber mortars, Mater. Des., 47, 633, 10.1016/j.matdes.2012.12.063 UNE-EN 12350–3:2009, Testing fresh concrete. Part 3: Vebe test, 2009. UNE-EN 12350–2:2009, Testing fresh concrete. Part 2: Slump test, 2009. UNE-EN 12390–3:2003. Testing hardened concrete. Part 3: Compressive Strength of Test Specimens, 2003. UNE-EN 12390–5:2009. Testing Hardened Concrete - Part 5: Flexural Strength of Test Specimens, 2009. UNE-EN 12504–2:2002. Testing Concrete in Structures - Part 2: Non-destructive Testing - Determination of Rebound Number, 2002. ISO 10534-2:1998, Acoustics determination of sound absorption coefficient and impedance or admittance by the impedance tube. Part II: Transfer Function Method, 1998. ISO 140–4:1999. Acoustics- measurement of sound insulation in buildings and of building elements- Part 4: field measurements of airborne sound insulation between rooms, 1999. ACI 213R–03.2003. Structural Lightweight-Aggregate Concrete ACI Committee 213, 2003. Gesoğlu, 2014, Investigating properties of pervious concretes containing waste tire rubbers, Constr. Build. Mater., 63, 206, 10.1016/j.conbuildmat.2014.04.046 Bérengier, 1997, Porous road pavements: acoustical characterization and propagation effects, J. Acoust. Soc. Am., 101, 155, 10.1121/1.417998 Voronina, 1994, Acoustic properties of fibrous materials, Appl. Acoust., 42, 165, 10.1016/0003-682X(94)90005-1