How to Address the Sustainability Transition of Farming Systems? A Conceptual Framework to Organize Research

Sustainability - Tập 10 Số 6 - Trang 2083
Guillaume Martin1, S. Allain1, Jacques-Éric Bergez1, Delphine Leenhardt1, Julie Constantin1, Michel Duru1, Laurent Hazard1, Camille Lacombe1, Daniele D. Magda1, Marie-Angélina Magne1, Julie Ryschawy1, Vincent Thénard1, Hélène Tribouillois1, Magali Willaume1
1AGroécologie, Innovations, teRritoires

Tóm tắt

Stakeholders from academic, political, and social spheres encourage the development of more sustainable forms of agriculture. Given its scale and scope, the sustainability transition is a challenge to the entire agricultural sector. The main question is, how to support the transition process? In this article, we explore how agricultural science can address the sustainability transition of farming systems to understand and support transition processes. We discuss the potential for articulating three research approaches: comprehensive analysis, co-design, and simulation modeling. Comprehensive analysis of the sustainability transition provides perspectives on the interplay between resources, resource management, and related performances of farming systems on the one hand and technical, economic, and sociocultural dimensions of change on the other. Co-design of the sustainability transition stimulates local-scale transition experiments in the real world and identification of alternatives for change. Simulation modeling explores future-oriented scenarios of management at multiple levels and assesses their impacts. We illustrate the articulation of research approaches with two examples of research applied to agricultural water management and autonomy in crop-livestock systems. The resulting conceptual framework is the first one developed to organize research to understand and support the sustainability transition of farming systems.

Từ khóa


Tài liệu tham khảo

Stehle, 2015, Agricultural insecticides threaten surface waters at the global scale, Proc. Natl. Acad. Sci. USA, 112, 5750, 10.1073/pnas.1500232112

Bommarco, 2013, Ecological intensification: Harnessing ecosystem services for food security, Trends Ecol. Evol., 28, 230, 10.1016/j.tree.2012.10.012

Niggli, U., Plagge, J., Reese, S., Fertl, T., Schmid, O., Brändli, U., Bärtschi, D., Pöpsel, G., Hermanowski, R., and Hohenester, H. (2018, May 09). Towards Modern Sustainable Agriculture with Organic Farming as the Leading Model. A Discussion Document on Organic 3.0. Available online: http://www.bioaktuell.ch/fileadmin/documents/ba/Bildung/Organic-Three-Zero-2015-12-07.pdf.

Francis, 2003, Agroecology: The ecology of food systems, J. Sustain. Agric., 22, 99, 10.1300/J064v22n03_10

Keating, 2010, Eco-efficient agriculture: Concepts, challenges, and opportunities, Crop Sci., 50, 109, 10.2135/cropsci2009.10.0594

Ollivier, 2013, Dynamiques paradigmatiques des agricultures écologisées dans les communautés scientifiques internationales, Nat. Sci. Soc., 21, 166, 10.1051/nss/2013093

Horlings, 2011, Towards the real green revolution? Exploring the conceptual dimensions of a new ecological modernization of agriculture that could “feed the world”, Glob. Environ. Chang., 21, 441, 10.1016/j.gloenvcha.2011.01.004

Kremen, 2012, Diversified farmings: An agroecological, systems-based, Ecol. Soc., 17, 44, 10.5751/ES-05103-170444

2012, Designing cropping systems from nature, Agron. Sustain. Dev., 32, 15, 10.1007/s13593-011-0027-z

Therond, 2017, A new analytical framework of farming system and agriculture model diversities: A review, Agron. Sustain. Dev., 37, 21, 10.1007/s13593-017-0429-7

Kemp, 2007, Transition management as a model for managing processes of co-evolution, Int. J. Sustain. Dev. World Ecol., 14, 78, 10.1080/13504500709469709

Kemp, 1994, Technology and the transition to environmental sustainability. The problem of technological regime shifts, Futures, 26, 1023, 10.1016/0016-3287(94)90071-X

Geels, 2002, Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study, Res. Policy, 31, 1257, 10.1016/S0048-7333(02)00062-8

Genus, 2008, Rethinking the multi-level perspective of technological transitions, Res. Policy, 37, 1436, 10.1016/j.respol.2008.05.006

Dentoni, 2017, Pathways of transformation in global food and agricultural systems: Implications from a large systems change theory perspective, Curr. Opin. Environ. Sustain., 29, 8, 10.1016/j.cosust.2017.10.003

Barton, 2018, Transition pathways for a UK low carbon electricity system. Comparing scenarios and technology implications, Renew. Sustain. Energy Rev., 82, 2779, 10.1016/j.rser.2017.10.007

Geels, 2006, Major system change through stepwise reconfiguration: A multi-level analysis of the transformation of American factory production (1850–1930), Technol. Soc., 28, 445, 10.1016/j.techsoc.2006.09.006

Martin, 2013, Farming system design to feed the changing world. A review, Agron. Sustain. Dev., 33, 131, 10.1007/s13593-011-0075-4

Duru, 2015, How to implement biodiversity-based agriculture to enhance ecosystem services: A review, Agron. Sustain. Dev., 35, 1259, 10.1007/s13593-015-0306-1

Widmark, 2013, Measuring transaction costs incurred by landowners in multiple land-use situations, Land Use Policy, 30, 677, 10.1016/j.landusepol.2012.05.012

Turnheim, 2015, Evaluating sustainability transitions pathways: Bridging analytical approaches to address governance challenges, Glob. Environ. Chang., 35, 239, 10.1016/j.gloenvcha.2015.08.010

Darnhofer, I., Gibbon, D., and Dedieu, B. (2012). Farming systems research: An approach to inquiry. Farming Systems into the 21st Century: The New Dynamic, Springer.

TIAS (2018, May 07). Defining Integrated Assessment. Available online: http://www.tias.uni-osnabrueck.de/integrated_assessment.php.

Bawden, 1991, Systems thinking and practice in agriculture, J. Dairy Sci., 74, 2362, 10.3168/jds.S0022-0302(91)78410-5

Ostrom, E., Gardner, R., and Walker, J.M. (1994). Rules, Games, and Common Pool Resources, University of Michigan Press.

Magne, 2010, A conceptual model of farmers’ informational activity: A tool for improved support of livestock farming management, Animal, 4, 842, 10.1017/S1751731110000637

Asai, 2018, Critical factors to crop-livestock integration beyond the farm level: A cross-analysis of worldwide case studies, Land Use Policy, 73, 184, 10.1016/j.landusepol.2017.12.010

Girard, 2008, Categorising farming practices to design sustainable land-use management in mountain areas, Agron. Sustain. Dev., 28, 333, 10.1051/agro:2007046

Magne, 2016, Initial insights on the performances and management of dairy cattle herds combining two breeds with contrasting features, Animal, 10, 892, 10.1017/S1751731115002840

Nowak, 2015, Nutrient recycling in organic farming is related to diversity in farm types at the local level, Agric. Ecosyst. Environ., 204, 17, 10.1016/j.agee.2015.02.010

Couix, 2016, Breeds both locally adapted and locally adopted, a condition for the sustainability of livestock activities, Cah. Agric., 25, 1

Magrini, 2015, Trajectoire d’innovation dans les systèmes laitiers français: Une analyse socio-technique de la démarche «Bleu-Blanc-Cœur», Innovations, 48, 187, 10.3917/inno.048.0187

Rasul, 2004, Sustainability of ecological and conventional gricultural systems in Bangladesh: An assessment based on environmental, economic and social perspectives, Agric. Syst., 79, 327, 10.1016/S0308-521X(03)00090-8

Zaralis, K., Smith, L., Belanche, A., Morin, E., Mullender, S., Martin-Garcia, I., and Yañez-Ruiz, D. (2017, January 21–24). Developing an assessment tool to evaluate the sustainability of sheep and goat farming systems in Europe. Proceedings of the 8th International Conference on Information and Communication Technologies in Agriculture, Food and Environment, Chania, Greece.

Martin, 2017, An integrated method to analyze farm vulnerability to climatic and economic variability according to farm configurations and farmers’ adaptations, Front. Plant. Sci., 8, 1483, 10.3389/fpls.2017.01483

Smit, 2006, Adaptation, adaptive capacity and vulnerability, Glob. Environ. Chang., 16, 282, 10.1016/j.gloenvcha.2006.03.008

Lamine, 2011, Transition pathways towards a robust ecologization of agriculture and the need for system redesign. Cases from organic farming and IPM, J. Rural Stud., 27, 209, 10.1016/j.jrurstud.2011.02.001

Chantre, 2014, Trajectories of French field crop farmers moving toward sustainable farming practices: Change, learning, and links with the advisory services, Agroecol. Sustain. Food Syst., 38, 573, 10.1080/21683565.2013.876483

Chantre, 2014, Transitional pathways towards input reduction on French field crop farms, Int. J. Agric. Sustain., 13, 69, 10.1080/14735903.2014.945316

Coquil, 2014, Transition to self-sufficient mixed crop–dairy farming systems, Renew. Agric. Food Syst., 29, 195, 10.1017/S1742170513000458

Basset, M. (2016). Analyse des Transitions de Systèmes Bovin Lait Vers des Pratiques de Croisement Volontaire. [Master’s Thesis, INP-ENSA Toulouse].

Ollion, E., Brives, H., Cloet, E., and Magne, M.-A. (2018, January 17–21). Suitable cows for grass-based systems: What stakeholders do in France?. Proceedings of the 27th EGF General Meeting on Sustainable Meat and Milk Production from Grasslands, Cork, Ireland. in press.

Etienne, M. (2014). Elevages et Territoires: Concepts, Méthodes, Outils, INRA FormaSciences.

Bouttes, M., Bize, N., Maréchal, G., Michel, G., and Martin, G. Dairy farmers’ vulnerability decreases during their conversion to organic farming. A case study in French Brittany, Agron. Sustain. Dev., under review.

Bouttes, M., Darnhofer, I., and Martin, G. Converting to organic farming as a way to enhance adaptive capacity, Org. Agric., under review.

Marshall, 2014, Transformational capacity in Australian peanut farmers for better climate adaptation, Agron. Sustain. Dev., 34, 583, 10.1007/s13593-013-0186-1

Buur, 2008, Approaches to user-driven innovation, Int. J. Innov. Manag., 12, 255, 10.1142/S1363919608001996

Waks, 2001, Donald Schon’s Philosophy of design and design education, Int. J. Technol. Des. Educ., 11, 37, 10.1023/A:1011251801044

McCown, 2002, Changing systems for supporting farmers’ decisions: Problems, paradigms, and prospects, Agric. Syst., 74, 179, 10.1016/S0308-521X(02)00026-4

Bammer, 2005, Integration and implementation sciences: Building a new specialization, Ecol. Soc., 10, 6, 10.5751/ES-01360-100206

Pretty, 1995, Participatory learning for sustainable agriculture, World Dev., 23, 1247, 10.1016/0305-750X(95)00046-F

Sterk, 2009, Land use models in complex societal problem solving: Plug and play or networking?, Environ. Model. Softw., 24, 165, 10.1016/j.envsoft.2008.07.001

Nickerson, 2012, Exploring the problem-finding and problem-solving approach for designing organizations, Acad. Manag. Perspect., 26, 52, 10.5465/amp.2011.0106

Pohl, 2008, Methodological challenges of transdisciplinary research, Nat. Sci. Soc., 16, 111, 10.1051/nss:2008035

Habermas, J. (1984). Theory of Communicative Action, Volume 1: Reason and the Rationalization of Society, Beacon Press.

Berthet, 2016, How to foster agro-ecological innovations? A comparison of participatory design methods, J. Environ. Plan. Manag., 59, 280, 10.1080/09640568.2015.1009627

Ansell, 2016, Varieties of experimentalism, Ecol. Econ., 130, 64, 10.1016/j.ecolecon.2016.05.016

Stoker, 2009, Design experiments: Engaging policy makers in the search for evidence about what works, Political Stud., 57, 356, 10.1111/j.1467-9248.2008.00756.x

Bouma, 2011, The role of knowledge when studying innovation and the associated wicked sustainability problems in agriculture, Adv. Agron., 113, 293, 10.1016/B978-0-12-386473-4.00006-3

Kilelu, 2013, Unravelling the role of innovation platforms in supporting co-evolution of innovation: Contributions and tensions in a smallholder dairy development programme, Agric. Syst., 118, 65, 10.1016/j.agsy.2013.03.003

Jones, 2016, Brief history of Agricultural Systems modeling, Agric. Syst., 155, 240, 10.1016/j.agsy.2016.05.014

Etienne, M. (2014). Companion Modelling. A Participatory Approach to Support Sustainable Development, Springer.

Kok, 2015, Pathways to achieve a set of ambitious global sustainability objectives by 2050: Explorations using the IMAGE integrated assessment model, Technol. Forecast. Soc. Chang., 98, 303, 10.1016/j.techfore.2015.03.005

Constantin, 2015, The soil-crop models STICS and AqYield predict yield and soil watercontent for irrigated crops equally well with limited data, Agric. For. Meteorol., 206, 55, 10.1016/j.agrformet.2015.02.011

Coucheney, 2015, Accuracy, robustness and behavior of the STICS v-8 soil-crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions, Environ. Model. Softw., 64, 177, 10.1016/j.envsoft.2014.11.024

Bergez, 2001, MODERATO: An object-oriented decision model to help on irrigation scheduling for corn crop, Ecol. Model., 137, 43, 10.1016/S0304-3800(00)00431-2

Robert, 2018, A dynamic model for water management at the farm level integrating strategic, tactical and operational decisions, Environ. Model. Softw., 100, 123, 10.1016/j.envsoft.2017.11.013

Giuliano, 2016, Low-input cropping systems to reduce input dependency and environmental impacts in maize production: A multi-criteria assessment, Eur. J. Agron., 76, 160, 10.1016/j.eja.2015.12.016

Tribouillois, 2018, Analysis and modeling of cover crop emergence: Accuracy of a static model and the dynamic STICS soil-crop model, Eur. J. Agron., 93, 73, 10.1016/j.eja.2017.12.004

Amigues, J.-P., Debaeke, P., Itier, B., Lemaire, G., Seguin, B., Tardieu, F., and Thomas, A. (2006). Adapter L’agriculture à un Risque Accru de Manque d’eau, INRA. Expertise Scientifique Collective, Synthèse du Rapport.

Erdlenbruch, 2013, La gestion du manque d’eau structurel et des sécheresses en France, Sci. Eaux Territ., 11, 78

Gordon, 2010, Managing water in agriculture for food production and other ecosystem services, Agric. Water Manag., 97, 512, 10.1016/j.agwat.2009.03.017

Pimentel, 1997, Water Resources: Agriculture, the Environment, and Society, BioScience, 47, 97, 10.2307/1313020

Molden, D. (2007). Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture, Earthscan.

EEA—European Environment Agency (2012). Territorial Cohesion and Water Management in Europe: The Spatial Perspective, EEA. EEA Technical Report.

EC—European Community (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water. Off. J. Eur. Communities, L327, 1–72.

Sendzimir, 2007, Managing Change toward Adaptive Water Management through Social Learning, Ecol. Soc., 12, 30, 10.5751/ES-02147-120230

Debril, 2012, Les difficultés associées à la gestion quantitative de l’eau et à la mise en œuvre de la réforme des volumes prélevables: Le cas du bassin Adour-Garonne, Agron. Environ. Soc., 2, 127

Guines, F. (2003). Etude des Besoins des Utilisateurs en Outils de Gestion de L’eau à L’échelle d’un Territoire, INRA. Study Report.

Balestrat, M., and Therond, O. (2014). Enjeux de la Gestion Quantitative de L’eau en France. Quels Données et Outils de Modélisation Pour les Institutions Publiques en Charge de la Gestion des Étiages?, ONEMA-INRA. Study Report.

Cheynier, L. (2010). La Gestion Quantitative de L’eau Sur le Bassin Adour -Garonne: Construction de Modèles Conceptuels Multi Niveaux à Partir de L’élicitation des Représentations des Acteurs. [Master’s Thesis, Université du Maine].

Gaulupeau, M. (2010). La Gestion Quantitative de L’eau Agricole Dans le Bassin Adour-Garonne, au Travers des Représentations de Ses Acteurs. [Master’s Thesis, INP-Toulouse].

Mayor, E., Sibertin-Blanc, C., Thérond, O., Panzoli, D., Vavasseur, M., and Mazzega, P. (2012, January 3–7). Formal representation of water withdrawal policies for integrated assessment. Proceedings of the European Conference on Complex Systems, Brussels, Belgium. Available online: http://hal.inria.fr/hal-00968234.

Therond, O., Sibertin-Blanc, C., Balestrat, M., Gaudou, B., Hong, Y., Louail, T., Nguyen, V.B., Panzoli, D., Sanchez-Perez, J.M., and Sauvage, S. (2014, January 15–19). Integrated modelling of social-ecological systems: The MAELIA high-resolution multi-agent platform to deal with water scarcity problems. Proceedings of the 7th International Congress on Environmental Modelling and Software, San Diego, CA, USA. Available online: https://hal.archives-ouvertes.fr/hal-01360865.

Murgue, 2016, Hybridizing local and generic information to model cropping system spatial distribution in an agricultural landscape, Land Use Policy, 54, 339, 10.1016/j.landusepol.2016.02.020

Hipolito, J. (2012). Distribution Spatiale et Caractérisation des Systèmes de Culture Dans le Territoire Irrigué à L’aval de la Rivière Aveyron. [Master’s Thesis, SupAgro Montpellier].

Rizzo, D., Therond, O., Lardy, R., Murgue, C., and Leenhardt, D. A rapid, spatially explicit approach to modeling cropping systems at the regional scale, Agric. Syst., under review.

Murgue, 2015, Towards sustainable water and agricultural land management: Participatory design of spatial distributions of cropping systems in a water-deficit basin, Land Use Policy, 45, 52, 10.1016/j.landusepol.2015.01.011

Alcamo, J. (2008). The SAS Approach: Combining qualitative and quantitative knowledge in environmental scenarios. Environmental Futures: The Practice of Environmental Scenario Analysis, Elsevier.

Tribouillois, H., Constantin, J., Willaume, M., Brut, A., Ceschia, E., Tallec, T., Beaudoin, N., and Therond, O. Predicting water balance of wheat and crop rotations with a simple model: AqYield, under review.

Allain, S., Obiang Ndong, G., Lardy, R., and Leenhardt, D. Strategies for bettering the quantitative status of water in agricultural landscapes—A contribution from integrated assessment and modeling, Agron. Sustain. Dev., under review.

Allain, S., Leenhardt, D., and Plumecocq, G. (2018, January 1–5). Integrated assessment in a multi-actor context—To which extent and at which price can we really integrate plural knowledge and values?. Proceedings of the IFSA 2018 Symposium, Chania, Greece. in press.

Frame, 2011, Integrating valuation and deliberation: The purposes of sustainability assessment, Environ. Sci. Policy, 14, 1, 10.1016/j.envsci.2010.10.009

Billen, 2014, A biogeochemical view of the global agro-food system: Nitrogen flows associated with protein production, consumption and trade, Glob. Food Secur., 3, 209, 10.1016/j.gfs.2014.08.003

Lassaletta, 2014, 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland, Environ. Res. Lett., 9, 105011, 10.1088/1748-9326/9/10/105011

Bell, 2012, Integrated crop–livestock systems in Australian agriculture: Trends, drivers and implications, Agric. Syst., 111, 1, 10.1016/j.agsy.2012.04.003

Hendrickson, 2008, Principles of integrated agricultural systems: Introduction to processes and definition, Renew. Agric. Food Syst., 23, 265, 10.1017/S1742170507001718

Lemaire, 2014, Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality, Agric. Ecosyst. Environ., 190, 4, 10.1016/j.agee.2013.08.009

Ryschawy, 2013, Paths to last in mixed crop-livestock farming: Lessons from an assessment of farm trajectories of change, Animal, 7, 673, 10.1017/S1751731112002091

Martin, 2011, Forage rummy: A game to support the participatory design of adapted livestock systems, Environ. Model. Softw., 26, 1442, 10.1016/j.envsoft.2011.08.013

Duru, 2009, Modeling above-ground herbage mass for a wide range of grassland community types, Ecol. Model., 220, 209, 10.1016/j.ecolmodel.2008.09.015

Bouttes, 2018, Vulnerability as a function of trade-offs between productivity and efficiency is driven by farmers’ practices on French organic dairy farms, Eur. J. Agron., 94, 89, 10.1016/j.eja.2018.01.013

Martin, 2017, Crop–livestock integration beyond the farm level: A review, Agron. Sustain. Dev., 36, 53, 10.1007/s13593-016-0390-x

Moraine, 2017, Participatory design and integrated assessment of collective crop-livestock organic systems, Ecol. Indic., 72, 340, 10.1016/j.ecolind.2016.08.012

Ryschawy, 2017, Designing crop-livestock integration at different levels: Toward new agroecological models?, Nutr. Cycl. Agroecosyst., 108, 5, 10.1007/s10705-016-9815-9

Ryschawy, J., Charmeau, A., Pelletier, A., Moraine, M., and Martin, G. (2018). Dynamix, un “jeu sérieux” pour concevoir des scenarios d’échanges entre céréaliers et éleveurs. Une application en Ariège. Fourrages, in press.

Martin, 2015, A conceptual framework to support adaptation of farming systems—Development and application with Forage Rummy, Agric. Syst., 132, 52, 10.1016/j.agsy.2014.08.013

Cash, 2003, Knowledge systems for sustainable development, Proc. Natl. Acad. Sci. USA, 100, 8086, 10.1073/pnas.1231332100

Hare, 2004, Processes of social learning in integrated resources management, J. Community Appl. Soc. Psychol., 14, 193, 10.1002/casp.774

Groot, 2011, Model-aided learning for adaptive management of natural resources: An evolutionary design perspective, Methods Ecol. Evol., 2, 643, 10.1111/j.2041-210X.2011.00114.x

Giampetro, M. (2018, May 09). Integrated Assessment of Agricultural Sustainability: The Pros and Cons of Reductionism. Available online: https://ddd.uab.cat/pub/estudis/2010/hdl_2072_96137/RepEnvSci_2010-01.pdf.

Giller, 2008, Competing Claims on Natural Resources: What Role for Science?, Ecol. Soc., 13, 34, 10.5751/ES-02595-130234

Adam, 2012, Building crop models within different crop modelling frameworks, Agric. Syst., 113, 57, 10.1016/j.agsy.2012.07.010

Martin, 2012, Simulations of plant productivity are affected by modelling approaches of farm management, Agric. Syst., 109, 25, 10.1016/j.agsy.2012.02.002

McCown, 2009, Re-inventing model-based decision support with Australian dryland farmers. 1. Changing intervention concepts during 17 years of action research, Crop Pasture Sci., 60, 1017, 10.1071/CP08455