Pair-copula constructions of multiple dependence
Tài liệu tham khảo
Bandeen-Roche, 1996, Modelling failure-time associations in data with multiple levels of clustering, Biometrika, 83, 29, 10.1093/biomet/83.1.29
Bedford, T., Cooke, R.M., 2001a. Monte Carlo simulation of vine dependent random variables for applications in uncertainty analysis. In: 2001 Proceedings of ESREL2001. Turin, Italy
Bedford, 2001, Probability density decomposition for conditionally dependent random variables modeled by vines, Annals of Mathematics and Artificial Intelligence, 32, 245, 10.1023/A:1016725902970
Bedford, 2002, Vines — a new graphical model for dependent random variables, Annals of Statistics, 30, 1031, 10.1214/aos/1031689016
Bollerslev, 1986, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307, 10.1016/0304-4076(86)90063-1
Breymann, 2003, Dependence structures for multivariate high-frequency data in finance, Quantitative Finance, 1, 1, 10.1080/713666155
Chen, 2005, Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection, The Canadian Journal of Statistics, 33, 389, 10.1002/cjs.5540330306
Chen, 2006, Estimation and model selection of semi-parametric copula-based multivariate dynamic models under copula misspecification, Journal of Econometrics, 135, 125, 10.1016/j.jeconom.2005.07.027
Demarta, 2005, The t-copula and related copulas, International Statistical Review, 73, 111, 10.1111/j.1751-5823.2005.tb00254.x
Dobrić, J., Schmid, F., 2007. A goodness of fit test for copulas based on Rosenblatt’s transformation. Computational Statistics and Data Analysis (in press)
Embrechts, 2003, Modelling dependence with copulas and applications to risk management
Embrechts, 2001, Correlation and dependency in risk management: Properties and pitfalls
Engle, 1982, Autoregressive conditional heteroskedasticity with estimates of the variance of united kingdom inflation, Econometrica, 50, 987, 10.2307/1912773
Fang, 2002, The meta-elliptical distributions with given marginals, Journal of Multivariate Analysis, 82, 1, 10.1006/jmva.2001.2017
Genest, 1995, A semi-parametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, 82, 543, 10.1093/biomet/82.3.543
Genest, C., et al., 2007. Omnibus goodness-of-fit tests for copulas: A review and a power study, Working paper, Université Laval
Genest, 1993, Statistical inference procedures for bivariate Archimedean copulas, Journal of the American Statistical Association, 88, 1034, 10.2307/2290796
Green, 2003
Joe, 1996, Families of m-variate distributions with given margins and m(m−1)/2 bivariate dependence parameters
Joe, 1997
Kendall, 1967, vol. 2
Kim, 2007, Comparison of semiparametric and parametric methods for estimating copulas, Computational Statistics and Data Analysis, 51, 2836, 10.1016/j.csda.2006.10.009
Kurowicka, D., Cooke, R.M., 2004. Distribution — free continuous bayesian belief nets. In: Fourth International Conference on Mathematical Methods in Reliability Methodology and Practice. Santa Fe, New Mexico
Kurowicka, 2007, Sampling algorithms for generating joint uniform distributions using the vine - copula method, Computational Statistics and Data Analysis, 51, 2889, 10.1016/j.csda.2006.11.043
Kurowicka, 2006
Ljung, 1979, The likelihood function for a stationary autoregressive moving average process, Biometrika, 66, 265, 10.1093/biomet/66.2.265
Mashal, R., Zeevi, A., 2002. Beyond correlation: Extreme co-movements between financial assets. Technical Report. Columbia University
McNeil, A.J., 2007. Sampling nested Archimedean copulas. Journal of Statistical Computation and Simulation (in press)
Oakes, 1994, Multivariate survival distributions, Journal of Nonparametric Statistics, 3, 343, 10.1080/10485259408832593
Rosenblatt, 1952, Remarks on a multivariate transformation, Annals of Mathematical Statistics, 27, 832, 10.1214/aoms/1177728190
Savu, C., Trede, M., 2006. Hierarchical Archimedean copulas. In: International Conference on High Frequency Finance. May, Konstanz, Germany
Shih, 1995, Inferences on the association parameter in copula models for bivariate survival data, Biometrics, 51, 1384, 10.2307/2533269
Sibuya, 1960, Bivariate extreme statistics, Annals of the Institute of Statistical Mathematics, 11, 195, 10.1007/BF01682329
Sklar, 1959, Fonctions de répartition à n dimensions et leurs marges, Publications de l’Institut de Statistique de L’Université de Paris, 8, 229
Venter, G.G., 2001. Tails of copulas. In: Proceedings ASTIN Washington, USA, pp. 68–113
Whelan, 2004, Sampling from Archimedean copulas, Quantitative Finance, 4, 339, 10.1088/1469-7688/4/3/009