Predicting vessel speed in the Arctic without knowing ice conditions using AIS data and decision trees
Tài liệu tham khảo
Adamovich, 1995, The empiric model of vessel movement in ice and generalization of the experience of the model usage in hydrometeorological support of shipping in the Arctic, 2, 30
Afonin, 2018, 2018. Study of ship speed regimes in the Arctic sea ice conditions, IOP Conf. Ser. Earth Environ. Sci., 194, 10.1088/1755-1315/194/7/072012
Andersen, 2021, Scheduling ships with uncertain arrival times through the Kiel Canal, Marit.Transp. Res., 2
Bergström, 2016, A simulation-based probabilistic design method for Arctic sea transport systems, J. Mar. Sci. Appl., 15, 349, 10.1007/s11804-016-1379-1
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
Breiman, 1984
Chen, 2016, Xgboost: a scalable tree boosting system, 785
dateandtime.info, 2020. Retrieved June 3 from https://dateandtime.info/city.php?id=1538111.
Department of Navigation and Oceanography of the Ministry of Defense of the Russian Federation, 1995. Руководство для сквозного плавания судов по Северному морскому пути. – С.П-б: Изд. ГУНИО МО РФ, 415 с. (In Russian).
Dumanskaya, 2013, Типовые условия на основных судоходных трассах морей европейской части России для зим различной суровости, Тр. Гидрометцентра РФ., 2013350, 142
Erceg, 2014, A numerical model to initiate the icebreaking pattern in level ice
Fagerholt, 2010, Reducing fuel emissions by optimizing speed on shipping routes, J. Oper. Res. Soc., 61, 523, 10.1057/jors.2009.77
Frederking, 2003, A model for ship routing in ice, 467
Jeong, 2017, Prediction of ship resistance in level ice based on empirical approach, Int. J. Nav. Arch. Ocean, 9, 613, 10.1016/j.ijnaoe.2017.03.007
Ke, 2017, LightGBM: a highly efficient gradient boosting decision tree
Kim, 2020, Predicting ship speeds in the Arctic using deep learning on historical AIS data
Kotovirta, 2009, A system for route optimization in ice-covered waters, Cold Reg. Sci. Technol., 55, 52, 10.1016/j.coldregions.2008.07.003
Kuuliala, 2017, Estimating operability of ships in ridged ice fields, Cold Reg. Sci. Technol., 135, 51, 10.1016/j.coldregions.2016.12.003
Lau, 2006, Discrete element modeling of ship manoeuvring in ice
Lensu, 2015, Assessing the Ice Performance of Ships in Terms of AIS Data, Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions
Li, 2018, Evaluation of selected state-of-the-art methods for ship transit simulation in various ice conditions based on full-scale measurement, Cold Regions Science and Technology, 151, 94, 10.1016/j.coldregions.2018.03.008
Li, 2019, An extended ice failure model to improve the fidelity of icebreaking pattern in numerical simulation of ship performance in level ice, Ocean Eng., 176, 169, 10.1016/j.oceaneng.2019.02.051
Lindqvist, 1989, A straightforward method for calculation of ice resistance of ships
Louppe, 2014
Löptien, 2014, Ice and AIS: ship speed data and sea ice forecasts in the Baltic Sea, Cryosphere, 8, 2409, 10.5194/tc-8-2409-2014
Lubbad, 2011, A numerical model for real-time simulation of ship–ice interaction, Cold Reg. Sci. Technol., 65, 111, 10.1016/j.coldregions.2010.09.004
Milaković, 2020, A machine learning-based method for simulation of ship speed profile in a complex ice field, Ships and Offshore Structures, 15, 974, 10.1080/17445302.2019.1697075
Montewka, 2015, Towards probabilistic models for the prediction of a ship performance in dynamic ice, Cold Reg. Sci. Technol., 112, 14, 10.1016/j.coldregions.2014.12.009
Montewka, 2019, Toward a hybrid model of ship performance in ice suitable for route planning purpose, Proc. Inst. Mech. Eng. O J. Risk Reliab., 233, 18
Montewka, 2013, Modelling ship performance in ice using Bayesian networks
Ng, 2019, Vessel speed optimization in container shipping: a new look, J. Oper. Res. Soc., 70, 541, 10.1080/01605682.2018.1447253
Ol'khovik, E.O., 2018. Исследование влияния мелководья на изменение скоростных режимов судов в акватории Северного морского пути. Вестник Государственного университета морского и речного флота имени адмирала С. О. Макарова. 10 (3), 486–496. (In Russian).
Ol'khovik, 2019, Study of changes of vessel's speed in ice conditions on the Northern Sea route
Pedregosa, 2011, Scikit-learn: machine learning in Python, JMLR, 12, 2825
Quinlan, 1986, Induction of decision trees, Mach. Learn., 1, 81, 10.1007/BF00116251
Riska, 1997
Sawamura, 2008, Finite element analysis of fluid–ice interaction during ice bending, 191
SCF Newsletter, 2019. Корпоративное издание группы СКФ December 05 (65). (In Russian).
Shukurov, 2018, A link between sea ice concentration in Kara Sea in November and large-scale atmospheric circulation, v10833
Shumovsky, S.A. 2012. О диких проблемах с которыми сталкнется ЯМАЛ-СПГ при вывозе продукции. Профессионально об энергетике. (In Russian).
Similä, 2018, Estimating the speed of ice-going ships by integrating SAR imagery and ship data from an Automatic identification system, Remote Sens., 10, 1132, 10.3390/rs10071132
Su, 2010, A numerical method for the prediction of ship performance in level ice, Cold Reg. Sci. Technol., 60, 177, 10.1016/j.coldregions.2009.11.006
Topaj, 2019, Optimal ice routing of a ship with icebreaker assistance, Applied Ocean Research, 86, 177, 10.1016/j.apor.2019.02.021
Valanto, 2001, The resistance of ships in level ice, SNAME Trans., 109, 53
Valkonen, 2013, COSSARC – concept selection for shipping in the arctic
von Westarp, 2021, Support of the speed decision in liner operation by evaluating the trade-off between bunker fuel consumption and reliability, Marit. Transp. Res., 2
Wang, 2001
Wetzel, 2020, Integrating fleet deployment into liner shipping vessel repositioning, Transp. Res. Part E Logist. Transp. Rev., 143, 10.1016/j.tre.2020.102101
Zhou, 2016, Numerical investigations of ship–ice interaction and maneuvering performance in level ice, Cold Reg. Sci. Technol., 122, 36, 10.1016/j.coldregions.2015.10.015
Zivot, 2006, Vector Autoregressive Models for Multivariate Time Series, 385