Materials for fuel-cell technologies

Nature - Tập 414 Số 6861 - Trang 345-352 - 2001
B.C.H. Steele1, Angelika Heinzel
1Centre for Ion Conducting Ceramics, Department of Materials, Imperial College, London SW7 2BP, UK. [email protected]

Tóm tắt

Từ khóa


Tài liệu tham khảo

Grove, W. R. On voltaic series and the combination of gases by platinum. Phil. Mag. Ser. 3 14, 127–130 (1839).

Steele, B. C. H. Material science and engineering: the enabling technology for the commercialisation of fuel cell systems. J. Mater. Sci. 36, 1053–1068 (2001).

Bauen, A. & Hart, J. Assessment of the environmental benefits of transport and stationary fuel cells. J. Power Sources 86, 482–494 (2000).

Dicks, A. L. & Larminie, J. in Proc. Fuel Cell 2000 (ed. Blomen, L.) 357–367 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 2000).

Kordesch, K. et al. Alkaline fuel cells applications. J. Power Sources 86, 162–165 (2000).

Anahara, R. Total development of fuel cells in Japan. J. Power Sources 49, xi–xiv (1994).

Whitaker, J. Investment in volume building: the 'virtuous cycle' in PAFC. J. Power Sources 71, 71–74 (1998).

MacKerron, G. Financial considerations of exploiting fuel cell technology. J. Power Sources 86, 28–33 (2000).

Kordesch, K. & Simader, G. Fuel Cells and their Applications (VCH, Veinheim, Germany, 1996).

Larminie, J. & Dicks, A. Fuel Cell Systems Explained (Wiley, Bognor Regis, 2000).

Borup, R. L. & Vanderborgh, N. E. Design and testing criteria for bipolar plate materials for PEM fuel cell applications. Mater. Res. Soc. Symp. Proc. 393, 151–155 (1995).

Barbir, F., Joy, G. C. & Weinberg, D. J. in Proc. Fuel Cell Seminar 2000 483–486 (Courtesy Associates, Washington DC, 2000).

Scholta, J., Rohland, B., Trapp, V. & Focken, U. Investigations on novel low-cost graphite composite bipolar plates. J. Power Sources 84, 231–234 (1999).

Mahlendorf, F., Niemzig, O. & Kreuz, C. in Proc. Fuel Cell Seminar 2000 138–140 (Courtesy Associates, Washington DC, 2000).

Mallant, R., Koene, F., Verhoeve, C. & Ruiter, A. in 1994 Fuel Cell Seminar 503–506 (Courtesy Associates, Washington DC, 1994).

Zawodzinski, C., Mahlon, S. & Gottesfeld, S. in 1996 Fuel Cell Seminar 659–662 (Courtesy Associates, Washington DC, 1996).

Makkus, R. C., Janssen, A. H. H., de Bruijn, F. A. & Mallant, R. K. A. Use of stainless steel for cost competitive bipolar plates in the SPFC. J. Power Sources 86, 274–282 (2000).

Davies, D. P., Adcock, P. L., Turpin, M. & Rowen, S. J. Stainless steel as a bi-polar plate material for solid polymer fuel cells. J. Power Sources 86, 237–242 (2000).

Starz, K. A., Auer, A., Lehmann, Th. & Zuber, R. Characterization of platinum-based electrocatalysts for mobile PEMFC applications. J. Power Sources 84, 167–172 (1999).

Wilson, M. S., Valerio, J. & Gottesfeld, S. Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochim. Acta 3, 355–363 (1995).

Uchida, M., Fukuoka, Y., Sugawara, Y., Ohara, H. & Ohta, A. Improved preparation process of very-low-platinum-loading electrodes for polymer electrolyte fuel cells. J. Electrochem. Soc. 145, 3708–3713 (1998).

Gottesfeld, S. et al. in Fuel Cell Seminar 2000 799–802 (Courtesy Associates, Washington DC, 2000).

McNicol, B. D., Rand, D. A. J. & Williams, K. R. Direct methanol-air fuel cells for road transport. J. Power Sources 83, 15–31 (1999).

Grot, W., Perfluorinated cation exchange polymers. Chemie-Ing.-Techn. MS260/75 (1975).

Eisman, G. A. in Proc. Vol. 86-13 156–171 (Electrochemical Society, New Jersey, 1986).

Kolde, J. A., Bahar, B., Wilson, M. S., Zawodzinski, T. A. & Gottesfeld, S. Advanced composite fuel cell membranes. J. Electrochem. Soc. 95, 193–201 (1995).

Wakizoe, M. & Watanabe, A. in 2000 Fuel Cell Seminar 27–30 (Courtesy Associates, Washington DC, 2000).

Huang, R. Y. M. & Kim, J. J. J. Appl. Polymer Sci. 89, 4017, 4029 (1984).

Zerfaß, T. Thesis, Univ. Freiburg (1998).

Nolte, R., Ledjeff, K., Bauer, M. & Mülhaupt, R. Partially sulphonated poly(arylene ether sulfone)—a versatile proton conducting membrane material for modern energy conversion technologies. J. Membr. Sci. 83, 211–220 (1993).

Kerres, J. A. Development of ionomer membranes for fuel cells. J. Membr. Sci. 185, 3–27 (2001).

Kreuer, K. D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29–39 (2001).

Savinell, R. F. et al. A polymer electrolyte for operation at temperatures upto 200C. J. Electrochem. Soc. 141, L46–L48 (1994).

Hasiotis, C. et al. Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells. J. Electrochem. Soc. 148, A513–A519 (2001).

Kerres, J., Ullrich, A., Meier, F. & Haring, T. Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells. Solid State Ionics 125, 243–249 (1999).

Minh, N. Q. & Takahashi, T. Science and Technology of Ceramic Fuel Cells (Elsevier, Amsterdam, 1995).

Yokokawa, H. Phase diagrams and thermodynamic properties of zirconia based ceramics. Key Eng. Mater. 154/155, 37–74 (1998).

Day, M. J. in 4th European SOFC Forum (ed. McEvoy, A. J.) 133–140 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 2000).

Sverdrup, E. F., Warde, C. J. & Eback, R. L. Design of high temperature solid-electrolyte fuel-cell batteries for maximum power output per unit volume. Energy Conver. 13, 129–141 (1973).

Dulieu, D. et al. in 3rd European SOFC Forum (ed. Stevens, P.) 447–458 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 1998).

Steele, B. C. H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500C. Solid State Ionics 129, 95–110 (2000).

Xia, C., Chen, F. & Liu, M. Reduced temperature SOFC fabricated by screen printing. Electrochem. Solid State Lett. 4, A52–A54 (2001).

Ralph, J. M., Schoeler, A. C. & Krumpelt, M. Materials for lower temperature SOFC. J. Mater. Sci. 36, 1161–1172 (2001).

Doshi, R. et al. Development of SOFCs that operate at 500C. J. Electrochem. Soc. 146, 1273–1278 (1999).

Irving, J. T. et al. in 4th European SOFC Forum (ed. McEvoy, A. J.) 471–477 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 2000).

Murray, E. P. & Tsai, T. A direct-methane fuel cell with a ceria based anode. Nature 400, 649–651 (1999).

Park, S., Craciun, R., Radu, V. & Gorte, R. J. Direct oxidation of hydrocarbons in a SOFC. 1. Methane oxidation. J. Electrochem. Soc. 146, 3603–3606 (1999).

Primdahl, S. & Mogensen, M. Exchange current densities in mixed conducting SOFC anodes. (Abstr. BS-PO-24, International Society for Solid State Ionics 2001, 8–13 July 2001, Cairns, Australia.) Solid State Ionics (in the press).

Hibino, T. et al. A low operating temperature SOFC in hydrocarbon-air mixtures. Science 288, 2031–2033 (2000).

Zhu, B. Advantages of intermediate temperature SOFC for tractionary applications. J. Power Sources 93, 82–86 (2001).

Kreuer, K. D. On the development of proton conducting materials for technological applications. Solid State Ionics 97, 1–15 (1997).

Bohn, H. G. & Schober, T. Electrical conductivity of the high temperature proton conductor BaZr0.9Y0.1O2.95 . J. Am. Ceram. Soc. 83, 768–772 (2000).

Haile, S. M., Boysen, D. A., Chisholm, C. R. I. & Merle, R. B. Solid acids as fuel cell electrolytes. Nature 410, 910–913 (2001).

Huijsmans, J. P. P. et al. An analysis of endurance issues for MCFC. J. Power Sources 86, 117–121 (2000).

Hockaday, R. et al. in Proc. Fuel Cell 2000 (ed. Blomen, L.) 37–44 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 2000).

Starz, K. A., Ruth, K, Vogt, M. & Zuber, R. in Proc. Int. Symp. Fuel Cells for Vehicles 20–22 November 2000, 210–215 (Nagoya, Japan, 2000).

Diethelm, R., Batawi, E. & Honegger, K. in Proc. Fuel Cell 2000 (ed. Blomen, L.) 203–211 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 2000).

Zizelman, J., Botti, J., Tachtler, J. & Wolfgang, S., SOFC auxiliary power unit: a paradigm shift in electric supply for transportation. Automotive Eng. Int. 108 (Delphi Suppl.), 14–20 (2000).