Correlation between Pseudo Jahn–Teller Effect Parameters, Hardness, and LP-LP Repulsion on Structural and Configurational Behaviors of Hydrazine, Diphosphane, and Diarasane
Tóm tắt
It has been shown that high-symmetry forms of any molecule undergo structural distortions due to the pseudo Jahn–Teller effect (PJTE). The cis-bent (
$${{C}_{{2{v}}}}$$
) and flat (D2h) configuration of hydrazine (1), diphosphane (2), and diarsane (3) were optimized at the CAM-B3LYP, B3LYP, and LC-ωPBE methods with the 6-311+G** basis set. Studies on the relationship between PJT’s stabilization energies, structural and hardness factors of compounds 1–3 have been investigated. The energy difference between the reference values (Δ) in the flat (D2h) geometries reduces from composition 1 to 3 (3.93, 1.96, and 0.93 eV). The calculated Δ[η(
$${{C}_{{2{v}}}}$$
) – η(D2h)] parameter increases from compound 1 to 3. It was found that D2h is more instable
$${{C}_{{2{v}}}}$$
configuration, Due to the repulsion of strong lone pair–lone pair. PJT stability energy rises from compound 1 to 3, which shows a higher stability of compositions 1–3 (0.2, 1.42, and 2.05 eV, respectively).
Tài liệu tham khảo
M. Vafaei-Nezhad, R. Ghiasi, and F. Shafiei, Russ. J. Phys. Chem. A 94, 772 (2020).
N. N. Milani, R. Ghiasi, and A. Forghaniha, J. Appl. Spectrosc. 86, 1123 (2020).
K. Hajhoseinzadeh, R. Ghiasi, and A. Marjani, Euras. Chem. Commun. 2, 78 (2020).
Q. Liu, X. Li, J. Guo, L. Wang, and Q. Zhang, Dyes Pigments 160, 165 (2019).
X. Li, Y. Wang, D. Wu, L. Liu, Sh.-H. Bo, and G. Ceder, Chem. Mater. 28, 6575 (2016).
U. Jacovella, C. J. Stein, M. Grütter, L. Freitag, C. Lauzin, M. Reiher, and F. Merkt, Phys. Chem. Chem. Phys. 20, 1072 (2018).
Sh. Kimura, H. Uchida, T. Kusamoto, and H. Nishihara, Dalton Trans. (2019). https://doi.org/10.1039/c8dt05104f
Ch. Tantardini and E. Benassi, Dalton Trans. 47, 5483 (2018).
I. B. Bersuker and V. Z. Polinger, Ber. Bunsen-Ges. Phys. Chem. 94, 896 (1990).
I. B. Bersuker, Chem. Rev. 101, 1067 (2001).
Y. Liu, W. Zou, I. B. Bersuker, and J. E. Boggs, Chem. Phys. 130, 184305 (2009).
Y. Liu, I. B. Bersuker, W. Zou, and J. E. Boggs, Chem. Phys. 376, 30 (2010).
P. Garcia-Fernandez, Y. Liu, I. B. Bersuker, and J. E. Boggs, Phys. Chem. Chem. Phys. 13, 3502 (2011).
G. Cirelli, F. Graf, and Hs. H. Günthard, Chem. Phys. Lett. 28, 494 (1974).
K. Schreiner, W. Ahrens, and A. Berndt, Angew. Chem. 14, 550 (1975).
D. M. Chipman and K. E. Miller, J. Am. Chem. Soc. 106, 6236 (1984).
H. Köppel, D. R. Yarkony, and H. Barentzen, The Jahn–Teller Effect: Fundamentals and Implications for Physics and Chemistry (Springer, Berlin, Heidelberg, 2010), p. 99.
H. Kayi, P. Garcia-Fernandez, I. B. Bersuker, and J. E. Boggs, J. Phys. Chem. A 117, 8671 (2013).
Y. R. Mo, W. Wu, and Q. E. Zhang, J. Phys. Chem. 98, 10048 (1994).
Z. Rappoport and J. F. Liebman, The Chemistry of Cyclobutanes (Wiley, New York, 2005).
J. I. C. Wu, Y. Mo, F. A. Evangelista, and P. von Ragué Schleyer, Chem. Commun. 48, 8437 (2012).
A. Toyota and Sh. Koseki, J. Phys. Chem. A 101, 5712 (1997).
A. Toyota and Sh. Koseki, J. Phys.Chem. A 102, 6668 (1998).
Sh. Koseki, A. Toyota, T. Muramatsu, T. Asada, and N. Matsunaga, J. Phys. Chem. A 120, 10207 (2016).
M. D. Radin and A. van der Ven, Chem. Mater. 30, 607 (2018).
H. Tachikawa, J. Phys. Chem. A 122, 4121 (2018).
E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
I. B. Bersuker, Chem. Rev. 101, 1067 (2001).
I. B. Bersuker, The Jahn–Teller Effect (Cambridge Univ. Press, New York, 2006).
I. B. Bersuker, Chem. Rev. 113, 1351 (2013).
I. B. Bersuker, Phys. Rev. Lett. 108, 137202 (2012).
R. J. Gillespie and R. S. Nyholm, Quart. Rev. Chem. Soc. 11, 339 (1957).
R. J. Gillespie, Coord. Chem. Rev. 252, 1315 (2008).