Interaction of SecB and SecA with the N-Terminal Region of Mature Alkaline Phosphatase on Its Secretion in Escherichia coli
Tóm tắt
Export-specific chaperone SecB and translocational ATPase SecA catalyze the cytoplasmic steps of Sec-dependent secretion in Escherichia coli. Their effects on secretion of periplasmic alkaline phosphatase (PhoA) were shown to depend on the N-terminal region of the mature PhoA sequence contained in the PhoA precursor. Amino acid substitutions in the vicinity of the signal peptide (positions +2, +3) not only dramatically inhibited secretion, but they also reduced its dependence on SecB. Immunoprecipitation reported their impaired binding with mutant prePhoA. The results testified that SecB and SecA interact with the mature PhoA region located close to the signal peptide in prePhoA.
Tài liệu tham khảo
Pugsley A. 1993. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57, 50–108.
Fekkes P., Driessen A. 1999. Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev. 63, 161–173.
von Heijne G. 1990. The signal pepide. J. Membrane Biol. 115, 195–201.
Andersson H., von Heijne G. 1991. A 30-residues long “export initiation domain” adjacent to the signal sequence is critical for protein translocation across the inner membrane. Proc. Natl. Acad. Sci. USA. 88, 9751–9754.
Kajava A., Zolov S., Kalinin A., Nesmeyanova M. 2000. Net charge of the first 18 residues of the mature sequence may be critical for protein translocation across the cytoplasmic membrane of gram-negative bacteria. J. Bacteriol. 182, 2163–2169.
Kononova S.N., Zolov N.S., Krupyanko V.I., Nesmeyanova M.A. 2000. The primary structure of the N-terminal region of Mature PhoA is important for PhoA secretion and function. Biokhimiya. 65, 1270–1277.
Driessen A. 2001. SecB, a molecular chaperone with two faces. Trends Microbiol. 9, 193–196.
Kumamoto C., Francetic O. 1993. Highly selective binding of nascent polypeptides by an Escherichia coli chaperone in vivo. J. Bacteriol. 175, 2184–2188.
Diamond D., Randall L. 1997. Kinetic partitioning. J.? Biol. Chem. 272, 28994–28998.
Hartl F., Lecker S., Schiebel E., Hendrick J., Wickner W. 1990. The binding cascade of SecB to SecA to SecY. Cell. 63, 269–279.
Kim J., Miller A., Wang L., Muller J., Kendall D. 2001. Evidence that SecB enhances the activity of SecA. Biochemistry. 40, 3674–3680.
Manting E., Driessen A. 2000. Escherichia coli translocase: the unraveling of molecular machine. Mol. Microbiol. 37, 226–238.
Driessen A., Manting E., van der Does C. 2001. The structural basis of protein targeting and translocation in bacteria. Nature Struct. Biol. 8, 492–498.
Lill R., Dowhan W., Wickner W. 1990. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell. 60, 271–280.
Kim J., Kendall D. 1998. Identification of a sequence motif that convers SecB-independent secretory protein in vivo. J. Bacteriol. 180, 1396–1401.
Kononova S.N., Khokhlova O.V., Zolov N.S., Nesmeyanova M.A. 2001. The effect of export-specific cytoplasmic chaperone SecB on alkaline phosphatase secretion in Escherichia coli. Biokhimiya. 66, 985–990.
Khisty V., Randall L. 1995. Demonstration in vivo that interaction of maltose-binding protein with SecB is determined by a kinetic partitioning. J. Bacteriol. 177, 3277–3282.
Casadaban M.J. 1976. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and mu. J. Mol. Biol. 104, 541–555.
Kumamoto C., Beckwith J. 1985. Evidence for specificity at an early step in protein export in Escherichia coli. J. Bacteriol. 163, 267–274.
Golovastov V., Zolov N.S., Nesmeyanova M.A. 2002. The interaction of the export-initiating domain of mature alkaline phosphatase with membrane phospholipids in the course of secretion in Escherichia coli. Biokhimiya. 67, 1182–1190.
Torriani A. 1966. In Procedures in Nucleic Acid Research. Eds. Gantoni G.L., Davis R. N.Y.: Harper and Row, 224–234.
Seoh H., Tai P. 1997. Carbon sourse-dependent synthesis of SecB, a cytosolic chaperone involved in protein translocation across Escherichia coli membranes. J. Bacteriol. 179, 1077–1081.
Boyd D., Guan D.-D., Willard S., Wright W., Strauch K., Beckwith J. 1987. In Phosphate Metabolism and Cellular Regulation in Microorganisms. Eds. Torriani-Gorini A., Rothman F.G., Silver S., Wright A., Yagil E. Washington: American Society for Microbiology, 89–93.
Michaelis S., Inouye H., Oliver D., Beckwith J. 1983. Mutations that alter the signal sequence of alkaline phosphatase in Escherichia coli. J. Bacteriol. 154, 366–374.
Miura T., Mizushima S. 1968. Separation by density gradient centrifugation of two types of membrane from spheroplast membrane of E. coli. Biochim. Biophys. Acta. 150, 159–161.
Schnaitman C. 1971. Solubilization of the cytoplasmic membrane of E. coli by Triton-X100. J Bacteriol. 108, 545–552.
Laemmli U. 1970. Cleavage of structural protein during the assembly of head of bacteriophage T4. Nature. 227, 680–685.
Davis B. 1964. Disk electrophoresis. II. Method and application to human serum proteins. Annal. New York Acad. Sci. 121, 404–427.
Lowry O., Rosebrough N., Farr A., Randall R. 1951. Protein measurement with the Folin phenol reagent. J.?Biol. Chem. 193, 265–275.
Nakata A., Shinagawa H., Rothman F. 1987. In Phosphate Metabolism and Cellular Regulation in Microorganisms. Eds. Torriani-Gorini A., Rothman F.G., Silver S., Wright A., Yagil E. Washington: American Society for Microbiology, 139–141.
Nesmeyanova M., Motlokh O., Kolot M., Kulaev I. 1981. Multiple forms of alkaline phosphatase from Escherichia coli cells with repressed and derepressed biosynthesis of the enzyme. J. Bacteriol. 146, 453–459.
Nesmeyanova M., Kalinin A., Karamyshev N., Mikhaleva N., Krupyanko V. 1997. Overproduction, secretion, isolation and properties of recombinant alkaline phosphatase encoded in Escherichia coli. Process Biochemistry. 32, 1–7.
Mori H., Ito K. 2001. The Sec protein-translocation pathway. Trends Microbiol. 9, 494–500.
Nakatogawa H., Ito K. 2001. Secretion monitor, Sec M, undergoes self-translation arrest in the cytosol. Mol. Cell. 7, 185–192.
Sarker S., Rudd K., Oliver D. 2000. Revised translation start site for secM defines an atypical signal peptide that regulates Escherichia coli secA expression. J. Bacteriol. 182, 5592–5595.
Smith V., Hardy S., Randall L. 1997. Determination of the binding frame of the chaperone SecB within the physiological ligand oligopeptide-binding protein. Protein Sci. 6, 1746–1755.
Randall L., Hardy S. 1995. High selective with low specifity: how SecB has solved the paradox of chaperone binding. Trends Biochem. Sci. 20, 65–69.
Kimsey H.H., Dagarag M.D., Kumamoto C.A. 1995. Diverse effects of mutation on the activity of the Escherichia coli export chaperone SecB. J. Biol. Chem. 270, 22831–22835.
Randall L.L., Hardy S.J., Topping T.B., Smith V.F., Bruce J.E., Smith R.D. 1998. The interaction between the chaperone SecB and its ligands: evidence for multiple subsites for binding. Protein Sci. 7, 2384–2390.
Economou A., Wickner W. 1994. SecA promotes preprotein translocation by undergoing ATP-driven cycles into the membrane insertion and definition. Cell. 78, 835-843.