Probabilistic interpretation for solutions of fully nonlinear stochastic PDEs

Springer Science and Business Media LLC - Tập 174 - Trang 177-233 - 2018
Anis Matoussi1, Dylan Possamaï2, Wissal Sabbagh3
1Laboratoire Manceau de Mathématiques, Institut du Risque et de l’Assurance, Le Mans Université, Le Mans, France
2IEOR Department, Columbia University, New York, USA
3Laboratoire de Mathématiques et Modélisation d’Évry, University of Evry, Evry, France

Tóm tắt

In this article, we propose a wellposedness theory for a class of second order backward doubly stochastic differential equation (2BDSDE). We prove existence and uniqueness of the solution under a Lipschitz type assumption on the generator, and we investigate the links between the 2BDSDEs and a class of parabolic fully nonlinear Stochastic PDEs. Precisely, we show that the Markovian solution of 2BDSDEs provide a probabilistic interpretation of the classical and stochastic viscosity solution of fully nonlinear SPDEs.

Tài liệu tham khảo

Aman, A., Mrhardy, N.: Obstacle problem for SPDE with onlinear Neumann boundary condition via reflected generalized backward doubly SDEs. Stat. Probab. Lett. 83(3), 863–874 (2013) Avellaneda, M., Levy, A., Paras, A.: Pricing and hedging derivative securities in markets with uncertain volatility. Appl. Math. Finance 2(2), 73–88 (1995) Bachouch, A., Gobet, E., Matoussi, A.: Empirical regression method for backward doubly stochastic differential equations. SIAM/ASA J. Uncertain. Quantif. 4(1), 358–379 (2016) Bachouch, A., Lasmar, A.B., Matoussi, A., Mnif, M.: Numerical scheme for semilinear SPDEs via backward doubly SDEs. Stoch. Partial Differ. Equ.: Anal. Comput. 1, 1–43 (2016) Bally, V., Matoussi, A.: Weak solutions for SPDEs and backward doubly stochastic differential equations. J. Theor. Probab. 14(1), 125–164 (2001) Bertsekas, D., Shreve, S.: Stochastic Optimal Control: The Discrete-time Case. Academic Press, New York (1978) Bichteler, K.: Stochastic integration and \(L^{p}-\)theory of semimartingales. Ann. Probab. 9(1), 49–89 (1981) Buckdahn, R., Bulla, I., Ma, J.: Pathwise Taylor expansions for Itō random fields. Math. Control Relat. Fields 1(4), 437–468 (2011) Buckdahn, R., Ma, J.: Stochastic viscosity solutions for nonlinear stochastic partial differential equations. I. Stoch. Process. Appl. 93(2), 181–204 (2001) Buckdahn, R., Ma, J.: Stochastic viscosity solutions for nonlinear stochastic partial differential equations. II. Stoch. Process. Appl. 93(2), 205–228 (2001) Buckdahn, R., Ma, J.: Pathwise stochastic Taylor expansions and stochastic viscosity solutions for fully nonlinear stochastic PDEs. Ann. Probab. 30(3), 1131–1171 (2002) Buckdahn, R., Ma, J.: Pathwise stochastic control problems and stochastic HJB equations. SIAM J. Control Optim. 45(6), 2224–2256 (2007) Buckdahn, R., Ma, J., Zhang, J.: Pathwise Taylor expansions for random fields on multiple dimensional paths. Stoch. Process. Appl. 125(7), 2820–2855 (2015) Buckdahn, R., Ma, J., Zhang, J.: Pathwise viscosity solutions of stochastic PDEs and forward path-dependent PDEs. (2015). arXiv:1501.06978 Caruana, M., Friz, P., Oberhauser, H.: A (rough) pathwise approach to a class of non-linear stochastic partial differential equations. Ann. de l’institut Henri Poincaré Anal. Non Linéaire (C) 28(1), 27–46 (2011) Chen, Z., Peng, S.: A general downcrossing inequality for \(g\)-martingales. Stat. Probab. Lett. 46(2), 169–175 (2000) Cheridito, P., Soner, H., Touzi, N., Victoir, N.: Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Commun. Pure Appl. Math. 60(7), 1081–1110 (2007) Crandall, M., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992) Dalang, R., Khoshnevisan, D., Nualart, E.: Hitting probabilities for systems of non-linear stochastic heat equations with additive noise. ALEA Latin Am. J. Probab. Math. Stat. 3, 231–271 (2007) Dawson, D.: Stochastic evolution equations. Math. Biosci. 15(3), 287–316 (1972) Dellacherie, C., Meyer, P.: Probabilités et Potentiel, Chapitres XII à XVI, Théorie du Potentiel. Hermann, Paris (1980) Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16(2), 827–852 (2006) Diehl, J., Friz, P.: Backward stochastic differential equations with rough drivers. Ann. Probab. 40(4), 1715–1758 (2012) Doob, J.L.: Classical potential theory and its probabilistic counterpart. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1984 edition El Karoui, N., Hamadène, S., Matoussi, A.: Backward stochastic differential equations and applications. Chapter 8 in the book Indifference Pricing: Theory and Applications, pp. 267–320. Springer, New York (2008) El Karoui, N., Tan, X.: Capacities, measurable selection and dynamic programming part I: abstract framework. (2013). arXiv:1310.3363 El Karoui, N., Tan, X.: Capacities, measurable selection and dynamic programming part II: application in stochastic control problems. (2013). arXiv:1310.3364 Fremlin, D.H.: Consequences of Martin’s Axiom, vol. 84 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1984) Friz, P., Gassiat, P., Lions, P.-L., Souganidis, P.: Eikonal equations and pathwise solutions to fully non-linear SPDEs. (2016). arXiv:1602.04746 Friz, P.K., Gassiat, P., Lions, P.-L., Souganidis, P.E.: Eikonal equations and pathwise solutions to fully non-linear spdes. Stoch. Partial Differ. Equ.: Anal. Comput. 5(2), 256–277 (2017) Gerencsér, M., Gyöngy, I., Krylov, N.: On the solvability of degenerate stochastic partial differential equations in Sobolev spaces. Stoch. Partial Differ. Equ. Anal. Comput. 3(1), 52–83 (2015) Gubinelli, M., Tindel, S., Torrecilla, I.: Controlled viscosity solutions of fully nonlinear rough PDEs. (2014). arXiv:1403.2832 Gyöngy, I., Krylov, N.: Accelerated finite difference schemes for linear stochastic partial differential equations in the whole space. SIAM J. Math. Anal. 42(5), 2275–2296 (2010) Gyöngy, I., Krylov, N.: Accelerated numerical schemes for PDEs and SPDEs. In: Stochastic Analysis 2010. Springer, Heidelberg, pp. 131–168 (2011) Hamadène, S., Ouknine, Y.: Reflected backward sdes with general jumps. Theory Probab. Appl. 60(2), 357–376 (2015) Ichikawa, A.: Linear stochastic evolution equations in Hilbert space. J. Differ. Equ. 28(2), 266–277 (1978) Karandikar, R.: On pathwise stochastic integration. Stoch. Process. Appl. 57, 11–18 (1995) Kazi-Tani, N., Possamaï, D., Zhou, C.: Second order BSDEs with jumps: existence and probabilistic representation for fully-nonlinear PIDEs. Electron. J. Probab. 20 (2015) Krylov, N., Rozovskiĭ, B.: On the Cauchy problem for linear stochastic partial differential equations. Izv.: Math. 11(6), 1267–1284 (1977) Krylov, N., Rozovskiĭ, B.: Stochastic evolution equations. J. Soviet Math. 16(4), 1233–1277 (1981) Kunita, H.: Stochastic Flows and Stochastic Differential Equations, vol. 24 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990) Lin, Y.: A new existence result for second-order BSDEs with quadratic growth and their applications. Stoch.: Int. J. Probab. Stoch. Process. 88(1), 128–146 (2016) Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic partial differential equations: non-smooth equations and applications. Comptes Rendus de l’Acad. des Sci.-Ser. I-Math. 327(8), 735–741 (1998) Lions, P.-L., Souganidis, P.E.: Fully nonlinear viscosity stochastic partial differential equations: non-smooth equations and applications. CR Acad. Sci. Paris 327(1), 735–741 (1998) Lions, P.-L., Souganidis, P.E.: Équations aux dérivées partielles stochastiques nonlinéaires et solutions de viscosité. Séminaire équations aux dérivées partielles 1998–1999(1), 1–13 (2000) Lions, P.-L., Souganidis, P.E.: Viscosity solutions of fully nonlinear stochastic partial differential equations. Sūrikaisekikenkyūsho Kōkyūroku, 1287, 58–65. (2002). Viscosity solutions of differential equations and related topics (Japanese) (Kyoto, 2001) Lyons, T.J.: Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance 2, 117–133 (1995) Ma, J., Wu, Z., Zhang, D., Zhang, J., et al.: On well-posedness of forward-backward sdes: a unified approach. Ann. Appl. Probab. 25(4), 2168–2214 (2015) Matoussi, A., Sheutzow, M.: Semilinear stochastic PDE’s with nonlinear noise and backward doubly SDE’s. J. Theor. Probab. 15, 1–39 (2002) Nutz, M.: Pathwise construction of stochastic integrals. Electron. Commun. Probab. 17(24), 1–7 (2012) Nutz, M.: A quasi-sure approach to the control of non-Markovian stochastic differential equations. Electron. J. Probab. 17(23), 1–23 (2012) Ocone, D., Pardoux, E.: A generalized itô–ventzell formula. application to a class of anticipating stochastic differential equations. Ann. de l’institut Henri Poincaré Probab. et Stat. (B) 25(1), 39–71 (1989) Pardoux, É.: Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3(1–4), 127–167 (1980) Pardoux, É., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990) Pardoux, É., Peng, S.: Backward doubly sde’s and systems of quasilinear spdes. Probab. Theory Relat. Field 98, 209–227 (1994) Pardoux, É., Protter, P.: A two-sided stochastic integral and its calculus. Probab. Theory Relat. Field 76(1), 15–49 (1987) Peng, S.: Backward SDE and related \(g-\)expectation. In: El Karoui, N., Mazliak, L. (eds.) Backward Stochastic Differential Equations, vol. 364 of Pitman Research Notes in Mathematics, pp. 141–159. Longman, Harlow (1997) Peng, S.: Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyer’s type. Probab. Theory Relat. Fields 113(4), 473–499 (1999) Peng, S., Shi, Y.: A type of time-symmetric forward-backward stochastic differential equations. C.R. Math. 336(9), 773–778 (2003) Possamaï, D.: Second order backward stochastic differential equations under a monotonicity condition. Stoch. Process. Appl. 123(5), 1521–1545 (2013) Possamaï, D., Tan, X.: Weak approximation of second-order BSDEs. Ann. Appl. Probab. 25(5), 2535–2562 (2015) Possamaï, D., Tan, X., Zhou, C.: Stochastic control for a class of non–linear stochastic kernels and applications. (2015). arXiv:1510.08439 Possamaï, D., Zhou, C.: Second order backward stochastic differential equations with quadratic growth. Stoch. Process. Appl. 123(10), 3770–3799 (2013) Ren, Z., Tan, X.: On the convergence of monotone schemes for path—dependent PDE. (2015). arXiv:1504.01872 Shi, Y., Gu, Y., Liu, K.: Comparison theorems of backward doubly stochastic differential equations and applications. Stoch. Anal. Appl. 23(1), 97–110 (2005) Soner, H., Touzi, N., Zhang, J.: Martingale representation theorem for the \(G\)-expectation. Stoch. Process. Appl. 121(2), 265–287 (2011) Soner, H., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16(67), 1844–1879 (2011) Soner, H., Touzi, N., Zhang, J.: Dual formulation of second order target problems. Ann. Appl. Probab. 23(1), 308–347 (2013) Soner, H.M., Touzi, N., Zhang, J.: Wellposedness of second order backward SDEs. Probab. Theory Relat. Fields 153(1–2), 149–190 (2012) Stricker, C., Yor, M.: Calcul stochastique dépendant d’un paramètre. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 45(2), 109–133 (1978) Stroock, D., Varadhan, S.: Multidimensional Diffusion Processes. Springer, Berlin (1979)