Sustainable solvents in chemical synthesis: a review

Springer Science and Business Media LLC - Tập 19 - Trang 3263-3282 - 2021
Devendra S. Wagare1, Sagar E. Shirsath2, Mujahed Shaikh3, Prashant Netankar4
1Department of Chemistry, Vivekanand College, Aurangabad, India
2School of Materials Science and Engineering, University of New South Wales, Sydney, Australia
3Department of Chemistry, Dr. Rafiq Zakaria College for Women, Aurangabad, India
4Department of Chemistry, Maulana Azad College, Aurangabad, India

Tóm tắt

Almost 20 million tons of solvents are released in the nature per year. Solvents represent about 80% of the total volume of chemicals employed in chemical synthesis. Solvents are often flammable or toxic, calling for the replacement of conventional solvents by sustainable solvents. Recent sustainable solvents can be recovered and reused easily, and can efficiently support catalysts. Here we review key synthetic procedure using supercritical liquid CO2, polyethylene glycol, glycerol, ionic liquids and deep eutectic solvents.

Tài liệu tham khảo

Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Ionic liquids in biotransformations and organocatalysis: solvents and beyond. J Am Chem Soc 126:9142. https://doi.org/10.1021/ja048266j Abou-Shehada S, Clark JH, Paggiola G, Sherwood J (2016) Tunable solvents: shades of green. Chem Eng Process 99:88–96. https://doi.org/10.1016/j.cep.2015.07.005 Adams DJ, Dyson PJ, Tavener SJ (2004) Chemistry in alternative reaction media. Wiley, Chichester Agata T (2017) Green solvents. J Educ Health Sport 7(9):224–232. https://doi.org/10.5281/zenodo.893346 Aghapoor K, Mohsenzadeh F, Darabi HR, Sayahi H, Reza Jalali M (2019) ZnCl2/urea eutectic solvent as stable carbonylation source for benign synthesis of 2-benzimidazolones and 2-imidazolones: an effective strategy for preventing NH3 gas evolution. Chem Select 4:11093–11097. https://doi.org/10.1002/slct.201902706 Ahmadi Sabegh M, Rajaei H, Zeinolabedini Hezave A, Esmaeilzadeh F (2012) Amoxicillin solubility and supercritical carbon dioxide. J Chem Eng Data 57(10):2750–2755. https://doi.org/10.1021/je200012x Al-Murshedi AYM, Alesary HF, Al-Hadrawi R (2019) Thermophysical properties in deep eutectic solvents with/without water. J Phys Conf Ser 1294(5):052041. https://doi.org/10.1088/1742-6596/1294/5/052041 Anastas PT (2003) Meeting the challenges to sustainability through green chemistry. Green Chem 5(2):G29–G34. https://doi.org/10.1039/B211620K Anastas PT, Williamson TC (1998) Green chemistry: frontiers in benign chemical syntheses and processes. Oxford University Press, Oxford Azizi N, Rahimi Z, Alipour M (2015) Deep eutectic solvent-assisted one-pot synthesis of 2-aminothiazole and 2-aminoxazole derivatives. C R Chim 18(6):626–629. https://doi.org/10.1016/j.crci.2014.10.001 Bahrani A, Karimi-Jaberi Z (2019) A green one-pot synthesis of α-amino nitrile derivatives via Strecker reaction in deep eutectic solvents. Monatsh Chem 150:303–307. https://doi.org/10.1007/s00706-018-2313-9 Bai Y, Yang HJ, Quan C, Guo CY (2007) Solubilities of 2,20-bipyridine and 4,40-dimethyl-2,20- bipyridine in supercritical carbon dioxide. J Chem Eng Data 52:2074–2076. https://doi.org/10.1021/je700269m Barna L, Blanchard JM, Rauzy E, Berro C (1996) Solubility of flouranthene, chrysene, and triphenylene in supercritical carbon dioxide. J Chem Eng Data 41:1466–1469. https://doi.org/10.1021/je960189n Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. J Supercrit Fluids 28:121–191. https://doi.org/10.1016/S0896-8446(03)00029-9 Biglari M, Shirini F, Mahmoodi NO, Zabihzadeh M, Mashhadinezhad M (2020a) A choline chloride-based deep eutectic solvent promoted three-component synthesis of tetrahydrobenzo [b] pyran and pyrano [2, 3-d] pyrimidinone (thione) derivatives. J Mol Struct 1205:127652 Biglari M, Shirini F, Mahmoodi NO, Zabihzadeh M, Safarpoor Nikoo Langarudi M, Alipour Khoshdel M (2020b) Taurine/choline chloride deep eutectic solvent as a novel eco-compatible catalyst to facilitate the multi-component synthesis of pyrano [2, 3-d] pyrimidinone (thione), hexahydroquinoline, and biscoumarin derivatives. Polycyclic Aromat Compd. https://doi.org/10.1080/10406638.2020.1781212 Blanchard LA, Hancu D, Beckman EJ, Brennecke JF (1999) Green processing using ionic liquids and CO2. Nature 399(6731):28–29. https://doi.org/10.1038/19887 Bose AK, Manhas MS, Ganguly SN, Sharma AH, Banik BK (2002) MORE chemistry for less pollution: applications for process development. Synthesis 11:1578–1591. https://doi.org/10.1055/s-2002-33344 Branch JA, Bartlett PN (2015) Electrochemistry in supercritical fluid. Philos Trans A Math Eng Sci 373(2057):20150007. https://doi.org/10.1098/rsta.2015.0007 Byrne FP, Jin S, Paggiola G, Petchey TH, Clark JH, Farmer TJ, Hunt AJ, McElroy CR, Sherwood J (2016) Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process 4:1–24 Chen J, Spear SK, Huddleston JG, Holbrey JD, Swatloski RP, Rogers RD (2004) Application of poly(ethylene glycol)-based aqueous biphasic systems as reaction and reactive extraction media. Ind Eng Chem Res 43(17):5358–5364. https://doi.org/10.1021/ie0341496 Chen J, Spear Scott K, Huddleston Jonathan G, Rogers Robin D (2005) Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem 7:64–82. https://doi.org/10.1039/B413546F Christoph R, Schmidt B, Steinberner U, Dilla W, Karinen R (2006) Glycerol. Ullmann’s Encycl Ind Chem. https://doi.org/10.1002/14356007.a12_477.pub2 Clarke CJ, Tu WC, Levers O, Brohl A, Hallett JP (2018) Green and sustainable solvents in chemical processes. Chem Rev 118:747–800. https://doi.org/10.1021/acs.chemrev.7b00571 Constable DJC, Gonzalez CJ, Henderson RK (2007) Perspective on solvent use in the pharmaceutical industry. Org Process Res Dev 11:133–137 Delgado-Abad T, Martínez-Ferrer J, Acerete R, Asensio G, Mello R, González-Núñez ME (2016) SN 1 reactions in supercritical carbon dioxide in the presence of alcohols: the role of preferential solvation. Org Biomol Chem 14(27):6554–6560. https://doi.org/10.1039/c6ob01097k Díaz-Álvarez AE, Francos J, Croche P, Cadierno V (2014) Recent advances in the use of glycerol as green solvent for synthetic organic chemistry. Curr Green Chem 1(1):51–65. https://doi.org/10.2174/221334610101131218094907 Emma S, David WD, John AG (1996) Chemicals in film, reagent.co.uk. Aim Oeap Hjf 40(4):423–435 Fahri F, Bacha K, Chiki FF et al (2020) Air pollution: new bio-based ionic liquids absorb both hydrophobic and hydrophilic volatile organic compounds with high efficiency. Environ Chem Lett 18:1403–1411. https://doi.org/10.1007/s10311-020-01007-8 Fernández MA, Boiteux J, Espino M, Gomez FJV, Silva MF (2018) Natural deep eutectic solvents-mediated extractions: the way forward for sustainable analytical developments. Anal Chim Acta 1038:1–10. https://doi.org/10.1016/j.aca.2018.07.059 Foroughi Kaldareh M, Mokhtary M, Nikpassand M (2019) Deep eutectic solvent mediated one-pot synthesis of hydrazinyl-4-phenyl-1, 3-thiazoles. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2019.1639062 García-González J, Molina MJ, Rodríguez F, Mirada F (2001) Solubilities of phenol and pyrocatechol in supercritical carbon dioxide. J Chem Eng Data 46:918–921. https://doi.org/10.1021/je0003795 García-Verdugo E, Altava B, Burguete MI, Lozano P, Luis SV (2015) Ionic liquids and continuous flow processes: a good marriage to design sustainable processes. Green Chem 17:2693–2713. https://doi.org/10.1039/C4GC02388A Gouin FR (1994) Preserving flowers and leaves (PDF). Maryland Cooperative Extension Fact Sheet. 2018, vol 556, pp 1–6. Retrieved 20 January Guo Z, Li M, Willauer HD, Huddleston JG, April GC, Rogers RD (2002) Evaluation of polymer-based aqueous biphasic systems as improvement for the hardwood alkaline pulping process. Ind Eng Chem Res 41:2535–2542. https://doi.org/10.1021/ie0104058 Gupta S, Khanna G, Khurana JM (2016) A facile eco-friendly approach for the one-pot synthesis of 3,4-dihydro-2H-naphtho[2,3-e][1,3]oxazine-5,10-diones using glycerol as a green media. Environ Chem Lett 14:559–564. https://doi.org/10.1007/s10311-016-0570-6 Gupta AK, Bharadwaj M, Mehrotra R (2019) Eco-friendly polyethylene glycol-400 as a rapid and efficient recyclable reaction medium for the synthesis of anticancer isatin linked chalcones and their 3-hydroxy precursor. J Heterocycl Chem 56:703–709. https://doi.org/10.1002/jhet.3424 “Glycerin (Oral Route)” Mayo Foundation for Medical Education and Research. Retrieved 17 November 2012 “Glycerin Enema” Drugs.com. Retrieved 17 November 2012 “Glycerol—Definition of glycerol in English by Oxford Dictionaries”. Oxford Dictionaries—English Hackl K, Kunz W (2018) Some aspects of green solvents. C R Chim. https://doi.org/10.1016/j.crci.2018.03.010 Han X, Poliakoff M (2012) Continuous reactions in supercritical carbon dioxide: problems, solutions and possible ways forward. Chem Soc Rev 41:1428–1436. https://doi.org/10.1039/c2cs15314a Hasaninejad A, Beyrati M (2018) Eco-friendly polyethylene glycol (PEG-400): a green reaction medium for one-pot, four-component synthesis of novel asymmetric al bisspirooxindole derivatives at room temperature. RSC Adv 8:1934–1939. https://doi.org/10.1039/C7RA13133J Heryanto R, Abdullah EC, Hasan M (2010) Solubility of isoniazid in supercritical carbon dioxide. J Chem Eng Data 55:2306–2309. https://doi.org/10.1021/je8001656 Hirase R, Honda K, Ishihara M, Yoshioka H, Monobe H (2018) A new method of using supercritical carbon dioxide as a green solvent for synthesis and purification of 5, 5‴-bis (tridecafluorohexyl)-2, 2′: 5′, 2″: 5″, 2‴-quaterthiophene, which is one of n-type organic semiconducting materials. Tetrahedron Lett 59:469–472. https://doi.org/10.1016/j.tetlet.2017.12.071 Horvath IT, Anastas PT (2007) Innovation: green chemistry. Chem Rev 107:2169–2173. https://doi.org/10.1021/cr078380v Hu YL, Zhang RL, Fang D (2019) Quaternary phosphonium cationic ionic liquid/porous metal–organic framework as an efficient catalytic system for cycloaddition of carbon dioxide into cyclic carbonates. Environ Chem Lett 17:501–508. https://doi.org/10.1007/s10311-018-0793-9 Hudgens RD, Hercamp RD, Francis J, Nyman DA, Bartoli Y (2007) An evaluation of glycerin (glycerol) as a heavy duty engine antifreeze/coolant base. SAE Tech Pap Ser. https://doi.org/10.4271/2007-01-4000 Hyatt JA (1984) Liquid and supercritical carbon dioxide as organic solvents. J Org Chem 49:5097–5101. https://doi.org/10.1021/jo00200a016 Ichthyosis: New Insights for the Healthcare Professional. ScholarlyEditions. 22 July 2013, 22 Ildon JT, Stevenson JH Jr, Ozand PT (1976) Mitochondrial glycerol kinase activity in rat brain. Biochem J 157:513–516. https://doi.org/10.1042/Fbj1570513 Jawale DV, Lingampalle DL, Pratap UR, Mane RA (2010) One-pot synthesis of 2-aminothiazoles in PEG-400. Chin Chem Lett 21:412–416. https://doi.org/10.1016/j.cclet.2009.11.035 Jenkins BT, Hajra AK (1976) Glycerol kinase and dihydroxyacetone kinase in rat brain. J Neurochem 26:377–385. https://doi.org/10.1111/j.1471-4159.1976.tb04491.x Johannsen M, Brunner G (1997) Solubilities of the fat-soluble vitamins A, D, E, and K in supercritical carbon dioxide. J Chem Eng Data 42:106–111. https://doi.org/10.1021/je960219m Joshi DR, Adhikari N (2019) An overview on common organic solvents and their toxicity. J Pharm Res Int. https://doi.org/10.9734/jpri/2019/v28i330203 Kerton FM, Marriot R (2013) Alternative solvents for green chemistry, 2nd edn. RSC Green Chemistry Book Series. RSC Publishing, Cambridge Knez Ž, Pantić M, Cör D, Novak Z, Hrnčič MK (2019) Are supercritical fluids solvents for the future? Chem Eng Process Process Intensif 15(107532):107532. https://doi.org/10.1016/j.cep.2019.107532 Koeken AC, Smeets NM (2013) A bulky phosphite modified rhodium catalyst for efficient hydroformylation of disubstituted alkenes and macromonomers in supercritical carbon dioxide. Catal Sci Technol 3:036–045. https://doi.org/10.1039/C2CY20867A Kostić MD, Divac VM (2019) Green solvents in organoselenium chemistry. Environ Chem Lett 17:897–915. https://doi.org/10.1007/s10311-018-00848-8 Krishnan A, Gopinath KP, Vo DVN et al (2020) Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review. Environ Chem Lett 18:2031–2054. https://doi.org/10.1007/s10311-020-01057-y Larhed M, Olofsson K (2006) Topics in current chemistry: microwave methods in organic synthesis. Springer, Berlin Li CJ, Anastas PT (2012) Green chemistry: present and future. Chem Soc Rev 41(4):1413–1414. https://doi.org/10.1039/C1CS90064A Li CJ, Trost BM (2007) Green chemistry for chemical synthesis. Proc Natl Acad Sci USA 105(36):13197–13202. https://doi.org/10.1073/pnas.0804348105 Li G, Jiang Y, Liu X, Deng D (2016) New levulinic acid-based deep eutectic solvents: synthesis and physicochemical property determination. J Mol Liq 222:201–207. https://doi.org/10.1016/j.molliq.2016.07.039 Loren CG, Gabriela FF, Gelson P, Diego A, Raquel G, Jacob E, Lenardão J (2010) Glycerol as a promoting medium for cross-coupling reactions of diaryl diselenides with vinyl bromides. Tetrahedron Lett 51:6772–6775. https://doi.org/10.1016/j.tetlet.2010.10.107 Lu JG, Li X, Zhao YX et al (2019) CO2 capture by ionic liquid membrane absorption for reduction of emissions of greenhouse gas. Environ Chem Lett 17:1031–1038. https://doi.org/10.1007/s10311-018-00822-4 Lyubimov SE, Rastorguev EA, Verbitskaya TA, Rys EG, Kalinin VN, Davankov VA (2010) Asymmetric hydrogenation of (E)-dimethyl-2-acetamido-2-phenylvinylphosphonate in supercritical carbon dioxide in the presence of metal complex catalysts with phosphite-type ligands. Russ J Phys Chem B 4(8):1241–1244. https://doi.org/10.1134/S1990793110080105 Lyubimov SE, Rastorguev EA, Petrovskii PV, Kelbysheva ES, Loim NM, Davankov VA (2011) Iridium-catalyzed asymmetric hydrogenation of imines in supercritical carbon dioxide using phosphite-type ligands. Tetrahedron Lett 52:1395–1397. https://doi.org/10.1016/j.tetlet.2011.01.104 Macnaughton SJ, Kikic I, Foster NR, Alessi P, Cortesi A, Colombo I (1996) Solubility of anti-inflammatory drugs in supercritical carbon dioxide. J Chem Eng Data 41:1083–1086. https://doi.org/10.1021/je960103q Mark GL, Warren RH, John BJ, Ian C (2017) Treatment of skin disease E-Book: comprehensive therapeutic strategies. Elsevier Health Sciences. ISBN 9780702069130 Mason TJ (1999) Sonochemistry. Oxford University Press, Oxford Mekala RS, Balam SK, Harinath JPS, Gajjal RR, Cirandur SR (2015) Polyethylene glycol (PEG-400): an efficient medium for the synthesis of 1, 2-disubstituted benzimidazoles. Cogent Chem 1:1049932. https://doi.org/10.1080/23312009.2015.1049932 Moritz W, de Vries Alex H, van Gunsteren Wilfred F (2009) Force-field dependence of the conformational properties of α, ω-dimethoxypolyethylene glycol. Mol Phys 107(13):1313–1321. https://doi.org/10.1080/00268970902794826 Moura L, Moufawad T, Ferreira M et al (2017) Deep eutectic solvents as green absorbents of volatile organic pollutants. Environ Chem Lett. https://doi.org/10.1007/s10311-017-0654-y Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31(1):19–43. https://doi.org/10.1016/j.progpolymsci.2005.08.002 Newsholme EA, Taylor K (1969) Glycerol kinase activities in muscles from vertebrates and invertebrates. Biochem J 112(4):465–474. https://doi.org/10.1042/bj1120465 Nimbalkar UD, Seijas JA, Vazquez-Tato MP, Damale MG, Sangshetti JN, Nikalje APG (2017) Ionic liquid-catalyzed green protocol for multi-component synthesis of dihydropyrano [2, 3-c] pyrazoles as potential anticancer scaffolds. Molecules 22:1628. https://doi.org/10.3390/molecules22101628 Nuchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis—a critical technology overview. Green Chem 6:128–141. https://doi.org/10.1039/B310502D Olivier-Bourbigou H, Magna L (2002) Ionic liquids: perspectives for organic and catalytic reactions. J Mol Catal A: Chem 182:419–437. https://doi.org/10.1016/S1381-1169(01)00465-4 Pagliaro M, Rossi M (2008) In the future of glycerol: new usages for a versatile raw material; Clark JH, Kraus GA (eds). RSC Green Chemistry Series: Cambridge, 104 p Parvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665. https://doi.org/10.1021/cr050948h Peglow TJ, Schumacher RF, Cargnelutti R, Reis AS, Luchese C, Wilhelm EA, Perin G (2017) Preparation of bis(2-pyridyl) diselenide derivatives: synthesis of selenazolo[5,4-b]pyridines and unsymmetrical diorganyl selenides, and evaluation of antioxidant and anticholinesterasic activities. Tetrahedron Lett 58:3734–3738. https://doi.org/10.1016/j.tetlet.2017.08.030 Peña-Solórzano D, Kouznetsov VV, Ochoa-Puentes C (2020) Physicochemical properties of a urea/zinc chloride eutectic mixture and its improved effect on the fast and high yield synthesis of indeno [2, 1-c] quinolines. New J Chem 44(19):7987–7997. https://doi.org/10.1039/D0NJ01342K Peng Z, Zheng X, Zhang Y, An D, Dong W (2018) H2O2-mediated metal-free protocol towards unsymmetrical thiosulfonates from sulfonyl hydrazides and disulfides in PEG-400. Green Chem 20:1760–1764. https://doi.org/10.1039/c8gc00381e Ponduri R, Kumar Pramod, Vadali Lakshmana Rao (2018) PEG-400 promoted a simple, efficient, and recyclable catalyst for the one-pot eco-friendly synthesis of functionalized isoxazole substituted pyrroles in aqueous medium. Synth Commun 48(24):3113–3122. https://doi.org/10.1080/00397911.2018.1535078 Potewar TM, Ingale SA, Srinivasan KV (2007) Efficient synthesis of 2, 4-disubstituted thiazoles using ionic liquid under ambient conditions: a practical approach towards the synthesis of Fanetizole. Tetrahedron 63(45):11066–11069 (J Porphyrins Phthalocyanines 2005; 9:256–261). https://doi.org/10.1016/j.tet.2007.08.036 Proposed ASTM Engine Coolant Standards Focus on Glycerin Astmnewsroom.org. Retrieved on 2012, 15 August Quan ZJ, Ren RG, Da YX, Zhang Z, Wang XC (2011) Glycerol as an alternative green reaction medium for multicomponent reactions using PS-PEG-OSO3H as catalyst. Synth Commun 41:3106–3116. https://doi.org/10.1080/00397911.2010.517373 Rajadurai V, Anguraj BL (2020) Ionic liquids to remove toxic metal pollution. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01115-5 Rama Koteswararao P, Tulasi SL, Pavani Y (2014) Impact of solvents on environmental pollution. National Seminar on Impact of Toxic Metals, Minerals and Solvents leading to Environmental Pollution. J Chem Pharm Sci 3:132–135 Rao RV, Vijaya PK (2006) Facile one-pot synthesis of 3-{2-[5-Hydroxy-4-(2-hydroxy-ethyl)-3-methyl-pyrazol-1-yl]-thiazol-4-yl}-chromen-2-ones via a three-component reaction. Synth Commun 36:2157–2161. https://doi.org/10.1080/00397910600637012 Rayner CM (2007) The potential of carbon dioxide in synthetic organic chemistry. Org Process Res Dev 11:121–132. https://doi.org/10.1021/op060165d Reichardt C (2007) Solvents and solvent effects: an introduction. Org Proc Res Dev 11:105–113. https://doi.org/10.1021/op0680082 Reshi NUD, Rizvi MA, Moosvi SK, Ahmad M, Gani A (2020) Solubility of organic compounds in scCO2. Green Sustain Process Chem Environ Eng Sci. https://doi.org/10.1016/b978-0-12-817388-6.00016-7 Sanni Babu N, Mutta Reddy S (2014) Impact of solvents leading to environmental pollution. National Seminar on Impact of Toxic Metals, Minerals and Solvents leading to Environmental Pollution. J Chem Pharm Sci 3(3):974–2115 Sarmiento JT, Olmos A, Belderrain TR, Caballero A, Varea T, Pérez PJ, Asension G (2019) Favoring alkane primary carbon − hydrogen bond functionalization in supercritical carbon dioxide as reaction medium. ACS Sustain Chem Eng 7:7346–7352. https://doi.org/10.1021/acssuschemeng.9b00523 Schaffarczy K, McHale KS, Haines RS, Harper JB (2018) Ionic liquids as solvents for SN2 processes. Demonstration of the complex interplay of interactions resulting in the observed solvent effects. Chem Plus Chem 83:1162–1168. https://doi.org/10.1002/cplu.201800510 Shaikh MH, Wagare D, Farooqui M, Durrani A (2017) Facile and green one-pot synthesis of 2-aminothiazole in glycerol-water. Heterocycl Lett 7(4):1061–1064 Shaikh MH, Wagare D, Farooqui M, Durrani A (2019a) Microwave assisted synthesis of novel Schiff bases of pyrazolyl carbaldehyde and triazole in PEG-400. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2018.1544154 Shaikh MH, Wagare D, Farooqui M, Durrani A (2019b) TMSCl catalyzed highly efficient synthesis of Schiff bases of thiazole in glycerol under microwave irradiation. Asian J Org Med Chem 4(2):109–112. https://doi.org/10.14233/ajomc.2019.ajomc-p170 Shaikh MH, Wagare D, Farooqui M, Durrani A (2019c) Rapid and environmentally benign protocol for the synthesis of pyrazolyl-4-Thiazolidinone. Asian J Pharm Pharmacol 5(3):576–581. https://doi.org/10.3102/ajpp.2019.5.3.21 Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278. https://doi.org/10.1039/B418069K Shi M, Cui SC, Li QJ (2004) Lithium heptadecafluorooctanesulfonate catalyzed Mannich-type and aza-Diels–Alder reactions in supercritical carbon dioxide. Tetrahedron 60:6163–6167. https://doi.org/10.1016/j.tet.2004.05.065 Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr300162p Stefanowska K, Franczyk A, Szyling J, Salamon K, Marciniec B, Walkowiak J (2017) An effective hydrosilylation of alkynes in supercritical CO2—a green approach to alkenyl silanes. J Catal 356:206–213. https://doi.org/10.1016/j.jcat.2017.10.005 Szyling J, Franczyk A, Stefanowska K, Klarek M, Maciejewski H, Walkowiak J (2018) An effective catalytic hydroboration of alkynes in supercritical CO2 under repetitive batch mode. Chem Cat Chem 10:531–539. https://doi.org/10.1002/cctc.201701318 Tang SL, Smith RL, Poliakoff M (2005) Principles of green chemistry: productively. Green Chem 7(11):761–762. https://doi.org/10.1039/B513020B Trost B (1991) The atom economy—a search for synthetic efficiency. Science 254:1471–1477. https://doi.org/10.1126/science.1962206 Trost B (2002) On inventing reactions for atom economy. Acc Chem Res 35:695–705. https://doi.org/10.1021/ar010068z Wagare DS, Lingampalle D, Mazahar F, Ayesha D (2016a) An enviornmentally benign one-pot synthesis of 3-aryl-furo[3,2-c]coumarins in PEG-400 and water. Der Phar Chem 8(1):408–411 Wagare DS, Farooqui M, Keche TD, Durrani A (2016b) Efficient and green microwave-assisted one-pot synthesis of azaindolizines in PEG-400 and water. Synth Commun 46(21):1741–1746. https://doi.org/10.1080/00397911.2016.1223314 Wagare DS, Netankar PD, Shaikh M et al (2017) Highly efficient microwave-assisted one-pot synthesis of 4-aryl-2-aminothiazoles in aqueous medium. Environ Chem Lett 15:475–479. https://doi.org/10.1007/s10311-017-0619-1 Wagare DS, Sonone A, Farooqui M, Durrani A (2019) An efficient and green microwave-assisted one pot synthesis of imidazothiadiazoles in PEG-400 and water. Polycycl Aromat Compd 26:1–6. https://doi.org/10.1080/10406638.2019.1695637 Wang CH, Alper H (1986) Phase-transfer-catalyzed conversion of alkynes to lactones induced by manganese carbonyl complexes. J Org Chem 51(2):273–275. https://doi.org/10.1021/jo00352a037 Wang XM, Wang XC, Wang CF, Yang L (2017) One-pot synthesis of 4-aryl-7,7-dimethyl-5-oxo-3,4,5,6,7,8-hexahydrocoumarin derivatives in glycerol. Green Chem Lett Rev 10(3):134–137. https://doi.org/10.1080/17518253.2017.1326530 Wang Y, Suo Q, Han L, Guo L, Wang Y, Li F (2018) Copper(II)/Palladium(II) catalysed highly selective cross-coupling of terminal alkynes in supercritical carbon dioxide. Tetrahedron 74:1918–1925. https://doi.org/10.1016/j.tet.2018.02.060 Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim, pp 174–332. https://doi.org/10.1021/op0340210 Welton T (2015) Solvents and sustainable chemistry. Proc Math Phys Eng Sci 471(2183):20150502. https://doi.org/10.1098/rspa.2015.0502 Wender PA, Croatt MP, Witulski B (2006) New reactions and step economy: the total synthesis of (±)-salsolene oxide based on the type II transition metal-catalyzed intramolecular [4 + 4] cycloaddition. Tetrahedron 62:7505–7511. https://doi.org/10.1016/j.tet.2006.02.085 Wilkes JS, Levisky JA, Wilson RA, Hussey CL (1982) Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg Chem 21:1263–1264. https://doi.org/10.1021/ic00133a078 Wolfson A, Christina D (2009) Glycerol as an alternative green medium for carbonyl compound reductions. Org Commun 2:34–41 Wolfson A, Dlugy C, Shotland Y (2007) Glycerol as a green solvent for high product yields and selectivities. Environ Chem Lett 5:67–71. https://doi.org/10.1007/s10311-006-0080-z World Health Organization (2015) IARC monographs on the evaluation of carcinogenic risks to humans. http://monographs.iarc.fr/ENG/Classification/index.php. Accessed 18 Dec 2015 Wu C, Xiao HJ, Wang SW, Tang MS, Tang ZL, Xia W, Li WF, Cao Z, He WM (2019) Natural deep eutectic solvent-catalyzed selenocyanation of activated alkynes via an intermolecular H-bonding activation process. ACS Sustain Chem Eng 7:2169–2175. https://doi.org/10.1021/acssuschemeng.8b04877 Xie WH, Fang JW, Li J, Wang BPG (1999) Aziridine synthesis in protic media by using lanthanide triflates as catalysts. Tetrahedron 55(45):12929–12938. https://doi.org/10.1016/S0040-4020(99)00791-7 Xing HY, Yang SuB, Huang M, Ren Q (2003) Solubility of artemisinin in supercritical carbon dioxide. J Chem Eng Data 48:330–332. https://doi.org/10.1021/je025575l Yu B (2014) Glycerol. Synlett 25:601–602. https://doi.org/10.1055/s-0033-1340636 Zare A, Hasaninejad A, Parhami A, Moosavi-Zare AR, Khedri F, Parsaee Z, Deisi H (2010) Ionic liquid 1-butyl-3-methylimidazolium bromide ([bmim] Br): a green and neutral reaction media for the efficient, catalyst-free synthesis of quinoxaline derivatives. J Serbian Chem Soc 75:1315–1324. https://doi.org/10.1016/j.scient.2011.05.005 Zhang J, Han B (2013) Supercritical or compressed CO2 as a stimulus for tuning surfactant aggregations. Acc Chem Res 46(2):425–433. https://doi.org/10.1021/ar300194j Zhang H, Long J, Cooper AI (2005) Aligned porous materials by directional freezing of solutions in liquid CO2. J Am Chem Soc 127(39):13482–13483. https://doi.org/10.1021/ja054353f Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540:354–362. https://doi.org/10.1038/nature21001