Prolonged noxious stimulation increases periaqueductal gray NMDA MRNA expression: A hybridization study using two different rat models for nociception
Tóm tắt
Từ khóa
Tài liệu tham khảo
Betz, H. Ligand-gated ion channels in the brain: the amino acid receptor superfamily. Neuron. 1990; 5: 383–392.
Jacquet, Y. F. The NMDA receptor: Central role in pain inhibition in the rat periaqueductal gray. Eur. J. Pharmacol 1988; 154: 271–276.
Behbehani, M. M., Fields, H. L. Evidence that an excitatory connection between periaqueductal gray and nucleus raphe magnus mediates stimulation produced analgesia. Brain Res. 1979; 170: 85–93.
Beitz, A. J. Relationship of glutamate and aspartate to the periaqueductal gray raphe magnus projection: analysis using immunocytochemistry and microdialysis. J. Histochem. Cytochem. 1990; 38: 1755–1765.
Jensen, T. S., Yaksh, T. L. The antinociceptive activity of excitatory amino acids in the rat brainstem: an anatomical and pharmacological analysis. Brain Res. 1992; 569: 255–267.
Wiklund, L., Behzadi, G., Kalen, P., Headley, P. M., Nicolopoulos, L. S., Parsons, C. G., West, D. C. Autoradiographic and electrophysiological evidence for excitatory amino acid transmission in the periaqueductal gray projection to nucleus raphe magnus in the rat. Neurosci. Lett. 1988; 93: 158–163.
Aanoson, L., Wilcox, G. L. Nociceptive action of excitatory amino acids in the mouse: effects of spinally administered opioids, phencyclidine and sigma agonists. J. Pharmacol. Exp. Ther. 1987; 243: 9–19.
Eisenberg, E., LaCross, S., Strassman, A. M. The effects of the clinically tested NMDA receptor antagonist memantine on carrageenan-induced thermal hyperalgesia in rats. Eur. J. Pharmacol. 1994; 255: 123–129.
Neugebauer, V., Lucke, T., Grubb, B., Schaible, H. G. The involvement of N-methyl-D-aspartate (NMDA) and non-NMDA receptors in the responsiveness of rat spinal neurons with input from the chronically inflamed ankle. Neurosci. 1994; 170: 237–240.
Ren, K., Dubner, R. NMDA receptor antagonists attenuate mechanical hyperalgesia in rats with unilateral inflammation of the hindpaw. Neurosci. Lett. 1993; 163: 22–26.
Bennett, G. J. Evidence from animal models on the pathogenesis of painful peripheral neuropathy: relevance for pharmacotherapy. In: A. I. Basbaum and J. M. Besson (Eds ), Towards a New Pharmacotherapy of Pain, John Wiley 1991; 365–379.
Dubner, R. Neuronal plasticity and pain following peripheral tissue inflammation or nerve injury. In: M. R. Bond, J. E. Charlton and C. J. Woolf (Eds.) Proc. of the VIth World Congress on Pain, Amsterdam, Elseveir. 1991; 263–276.
Seltzer, Z., Cohn, S., Ginszberg, R., Beilin, B. Z. Modulation of neuropathic pain behavior in rats by spinal disinhibition and NMDA receptor blockade of injury discharge. Pain 1991; 45: 69–75.
Tal, M., Bennett, G. J. Dextrophan relieves neuropathic heat-evoked hyperalgesia in the rat. Neurosci. Lett. 1993; 151: 107–110.
Yamamoto, T., Yaksh, T. L. Comparison of the antinociceptive effects of preand post-treatment with intrathecal morphine and MK801, and NMDA antagonist, on the formalin test in the rat. Anesthesiol. 1992; 77: 757–763.
Sluka, K. A., Jordan, H. H., Willis, W. D., Westlund, K. N. Differential effects of N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists on spinal release of amino acids after development of acute arthritis in rats. Brain Res. 1994; 664: 77–84.
Ishii, T., Moriyoshi, K., Sugihara, H., Sakurada, K., Kadotani, H., Yokoi, M., Akazawa, C., Shigemoto, R., Mizuno, N., Masu, M., Nakanishi, S. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J. Biol. Chem.1993; 268: 2836–2843.
Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Misuno, Nakanishi, S. Molecular cloning and characterization of the rat NMDA receptor. Nature 1991 ; 354: 31–37.
Beitz, A. J. The midbrain periaqueductal gray in the rat. I. Nuclear volume, cell density, orientation, and regional subdivisions. J. Comp. Neur. 1985; 237: 445–459.
Hamilton, B. L. Cytoarchitectural subdivisions of the periaqueductal gray matter in the cat. J. Comp. Neuro. 1973; 149: 1–28.
Shiply, M. T., McLean, J. H., Behbehani, M. M. Heterogeneous distribution of neurotensin-like immunoreactive neurons and fibers in the midbrain periaqueductal gray of the rat. J. Neurosci. 1987; 7: 2025–2034.
Fardin, V., Oliveras, J. L., Besson, J. M. A. Reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. The production of behavioral side effects together with analgesia. Brain Res. 1984, 306: 105–123.
Mayer, D. J., Wolfle, T. L., Akil, H., Garder, B., Liebeskind, J. C. Analgesia from electrical stimulation in the brainstem of the rat. Sci. 1971; 174: 1351–1354.
Depaulis, A., Morgan, M. M., Liebeskind, G. A. B. Aergic modulation of the analgesic effects of morphine microinjected in the ventral periaqueductal gray matter of the rat. Brain Res. 1987; 436: 223–228.
Carrive, P., Dampney, R. A. L., Bandler, R. Excitation of neurons in a restricted portion of the midbrain periaqueductal gray elicits both behavioral and cardiovascular components of the defense reaction in the unanaesthetised decerebrate cat. Neurosci. Lett. 1987; 81: 273–278.
Larson, C. R., Kistler, M. K. The relationship of periaqueductal gray neurons to vocalization and laryngeal EMG in the behaving monkey. Exp. Brain Res. 1986; 63: 596–606.
Basbaum, A. I., Fields, H. L. Endogenous pain control system: Brainstem spinal pathways and endorphin circuitry. Ann. Rev. Neurosci. 1984; 7: 309–338.
Keay, K. A., Bandler, R. Deep and superficial noxious stimulation increases Fos-like immunoreactivity in different regions of the midbrain periaqueductal gray of the rat. Neurosci. Lett. 1993; 154: 23–26.
Keay, K. A., Clement, C. I., Owler, B., Depaulis, A., Bandler, R. Convergence of deep somatic and visceral nociceptive information onto a discrete ventrolateral midbrain periaqueductal gray region. Neurosci. 1994; 61: 727–732.
Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983; 16: 109–110.
Williams, F., Beitz, A. J. Chronic pain increases brainstem proneurotensin/neruomedin-N mRNA expression: a hybridization-histochemical and immunohistochemical study using three different rat models for chronic nociception. Brain Res. 1993; 611:87–102.
Stein, C., Millan, J. J., Herz, A. Unilateral inflammation of the hindpaw in rats as a model of prolonged noxious stimulation: Alterations in behavior and nociceptive thresholds. Pharmacol. Biochem. Behav. 1988; 31: 445–451.
Bennett, G. J., Xie, Y. K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988; 33: 87–107.
Noguchi, K., Ruda, M. A. Gene regulation in an ascending nociceptive pathway: inflammation-induced increase in preprotachykinin mRNA in rat lamina I spinal projection neurons. J. Neurosci. 1992; 7: 2563–2572.
Reichling, D. B., Basbaum, A. I. Collateralization of periaqueductal gray neurons to forebrain or diencephalon and to the medullary nucleus raphe magnus in the rat. Neurosci. 1991; 42: 183–200.
Paxinos, G, Watson, C. The rat brain stereotaxic coordinates. (2nd Edn) Sydney; Academic Press. 1986.
Harrison, P. J., Pearson, R. C. In situ hybridization histochemistry and the study of gene expression in the human brain. Prog. Neurobiol. 1990; 34: 271–312.
Palacios, J. M., Mengod, G., Vilaro, M. T., Ramm, R. Recent trends in receptor analysis techniques and instrumentation. J. Chem. Neuroanat. 1991; 4: 343–353.
Renno, W. M., Kus, L., Price, R., Beitz, A. J. Analysis of NMDA receptor mRNA expression in the caudal periaqueductal gray of rats in two pain models. In IASP Publications, Congress Abstracts 7th world Congress on Pain, Paris, France; 1993.
Sherman, A. D., Gebhart, G. F. Pain-induced alteration of glutamate in periaqueductal central gray and its reversal by morphine. Life Sci. 1975; 15: 1781–1789.
Cotman, C. W., Monaghan, D. T., Ottersen, O. P., Storm-Mathisen, J. Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci. 1987; 10: 273–280.
Clements, J. R., Madl, J. E., Johnson, R. L., Larson, A. A, Beitz, A. J. Localization of glutamate, glutaminase, aspartate and aspartate aminotransferase in the rat midbrain periaqueductal gray. Exp. Brain Res. 1987; 67: 594–602.
Beitz, A. J., Williams, F. G. Localization of putative amino acid transmitters in the PAG and their relationship to the PAG-raphe magnus pathway. In: A. Depaulis and R. Bandler (Eds.), The Midbrain Periaqueductal Gray Matter, New York, Plenum, 1991; 305–327.
Renno, W. M., Mullett, M. A., Beitz, A. J. Systemic morphine reduces GABA release in the lateral but not the medial portion of the midbrain periaqueductal gray of the rat. Brian Res. 1992; 594: 221–232.
Ottersen, O. P., Storm-Mathisen, J. Glutamate-and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J. Comp. Neurol. 1984; 229: 374–392.
Beart, P. M., Summers, R. J., Stephenson, J. A., Cook, C. J., Christie, M. J. Excitatory amino acid projections to the periaqueductal gray in the rat; a retrograde transport study utilizing D[3H]aspartate and [3H]GABA. Neurosci. 1990; 34:63–176.
Christie, M. J., James, L. B, Beart, P. M. An excitatory amino acid projection from rat prefrontal cortex to periaqueductal gray. Brain Res. Bull. 1986; 16: 127–129.
Beart, P. M., Nicolopoulos, L. S., West, D. C, Headley, P. M. An excitatory amino acid projection from the ventromedial hypothalamus to periaqueductal gray in the rat: autoradiographic and electrophysiological evidence. Neurosci. Lett. 1988; 85: 205–211.
Beitz, A. J. Possible origin of glutamatergic projection to the midbrain periaqueductal gray and deep layer of the superior colliculus of the rat. Brain Res. Bull. 1989; 23: 25–35.
Al-Rodhan, N., Chipkin, R., Yaksh, T. L. The antinociceptive effects of SCH-32615, a neutral endopeptidase (enkephalinase) inhibitor, microinjected into the periaqueductal, ventral medulla and amygdala. Brain Res. 1990; 520: 123.
Aimone, L. D., Gebhart, G. F. Serotonin and/or an excitatory amino acid in the medial medulla mediates stimulation-produced antinociception from the lateral hypothalamus in the rat. Brain Res. 1988; 450: 170.
Fang, F. G., Haws C. M., Drasner, K., Williamson, A, Fields, H. L. Opioid peptides (DAGO-enkephalin, dynorphin A( 1 –13), BAM 22P) microinjected into the rat brainstem: comparison of their antinociceptive effect and their on neuronal firing in the rostral ventrolateral medulla. Brain Res. 1989; 501: 116.
Andersen, E., Dafny, N. An ascending serotoninergic pain modulation pathway from the dorsal raphe nucleus to the parafascicularis nucleus of the thalamus. Brain Res. 1983; 269: 57–67.
Oliveras, J. L., Besson, J. M. Stimulation-produced analgesia in animals: behavioral investigations: In H. L. Feilds and J. M. Besson (Eds.), Pain Modulation, Progress in Brain Research Vol. 77, Amsterdam, Elseveir. 1988; 141–157.
