Genetics of yellow-orange color variation in a pair of sympatric sulphur butterflies
Tài liệu tham khảo
Orteu, 2020, The genomics of coloration provides insights into adaptive evolution, Nat. Rev. Genet., 21, 461, 10.1038/s41576-020-0234-z
Sapir, 2021, What Maintains Flower Colour Variation within Populations?, Trends Ecol. Evol., 36, 507, 10.1016/j.tree.2021.01.011
Wellenreuther, 2014, Sexual selection and genetic colour polymorphisms in animals, Mol. Ecol., 23, 5398, 10.1111/mec.12935
San-Jose, 2017, Genomics of coloration in natural animal populations, Philos. Trans. R. Soc. Lond. B Biol. Sci., 372, 10.1098/rstb.2016.0337
Andrade, 2019, Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard, Proc. Natl. Acad. Sci. USA, 116, 5633, 10.1073/pnas.1820320116
Gazda, 2020, A genetic mechanism for sexual dichromatism in birds, Science, 368, 1270, 10.1126/science.aba0803
Westerman, 2018, Aristaless Controls Butterfly Wing Color Variation Used in Mimicry and Mate Choice, Curr. Biol., 28, 3469, 10.1016/j.cub.2018.08.051
Morgan, 2018, Genome-wide study of hair colour in UK Biobank explains most of the SNP heritability, Nat. Commun., 9, 5271, 10.1038/s41467-018-07691-z
Albertson, 2014, Genetic basis of continuous variation in the levels and modular inheritance of pigmentation in cichlid fishes, Mol. Ecol., 23, 5135, 10.1111/mec.12900
Brien, 2022, The genetic basis of structural colour variation in mimetic Heliconius butterflies, Philos. Trans. R. Soc. Lond. B Biol. Sci., 377, 10.1098/rstb.2020.0505
Brien, 2019, Phenotypic variation in Heliconius erato crosses shows that iridescent structural colour is sex-linked and controlled by multiple genes, Interface Focus, 9, 10.1098/rsfs.2018.0047
Elkin, 2022
Figon, 2019, Ommochromes in invertebrates: biochemistry and cell biology, Biol. Rev., 94, 156, 10.1111/brv.12441
Futahashi, 2021, Pigments in Insects
Spiewak, 2018, Evolution of Endothelin signaling and diversification of adult pigment pattern in Danio fishes, PLoS Genet., 14, 10.1371/journal.pgen.1007538
Toomey, 2022, A mechanism for red coloration in vertebrates, Curr. Biol., 32, 4201, 10.1016/j.cub.2022.08.013
Twyman, 2016, Seeing red to being red: conserved genetic mechanism for red cone oil droplets and co-option for red coloration in birds and turtles, Proc. Biol. Sci., 283
Martin, 2017, Morphological Evolution Repeatedly Caused by Mutations in Signaling Ligand Genes
Rockman, 2012, The QTN program and the alleles that matter for evolution: all that’s gold does not glitter, Evolution, 66, 1, 10.1111/j.1558-5646.2011.01486.x
Roulin, 2016, Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration, Biol. Rev. Camb. Phil. Soc., 91, 328, 10.1111/brv.12171
Svensson, 2011, Carotenoid-based signals in behavioural ecology: a review, Beyond Behav., 148, 131
Burraco, 2022, Ionizing radiation and melanism in Chornobyl tree frogs, Evol. Appl., 15, 1469, 10.1111/eva.13476
Orr, 1998, The Population Genetics of Adaptation: The Distribution of Factors Fixed During Adaptive Evolution, Evolution, 52, 935, 10.2307/2411226
Dembeck, 2015, Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster, PLoS Genet., 11, 10.1371/journal.pgen.1005163
Carbone, 2005, Quantitative Trait Loci Affecting the Difference in Pigmentation Between Drosophila yakuba and D. santomea, Genetics, 171, 211, 10.1534/genetics.105.044412
Yeh, 2014, The Genetic Architecture of Coordinately Evolving Male Wing Pigmentation and Courtship Behavior in Drosophila elegans and Drosophila gunungcola, G3, 4, 2079, 10.1534/g3.114.013037
Schielzeth, 2012, QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait, Evolution, 66, 18, 10.1111/j.1558-5646.2011.01431.x
Slate, 2013, From beavis to beak color: a simulation study to examine how much qtl mapping can reveal about the genetic architecture of quantitative traits, Evolution, 67, 1251
Kardos, 2016, Whole-genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations, Mol. Ecol. Resour., 16, 727, 10.1111/1755-0998.12498
Ju, 2021, The evolution of skin pigmentation-associated variation in West Eurasia, Proc. Natl. Acad. Sci. USA, 118, 10.1073/pnas.2009227118
Martin, 2017, An Unexpectedly Complex Architecture for Skin Pigmentation in Africans, Cell, 171, 1340, 10.1016/j.cell.2017.11.015
Simcoe, 2021, Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color, Sci. Adv., 7, 10.1126/sciadv.abd1239
Andrade, 2021, Pterin-based pigmentation in animals, Biol. Lett., 17, 10.1098/rsbl.2021.0221
Vargas-Lowman, 2019, Cooption of the pteridine biosynthesis pathway underlies the diversification of embryonic colors in water striders, Proc. Natl. Acad. Sci. USA, 116, 19046, 10.1073/pnas.1908316116
Woronik, 2019, A transposable element insertion is associated with an alternative life history strategy, Nat. Commun., 10, 5757, 10.1038/s41467-019-13596-2
Morehouse, 2007, Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies, Proc. Biol. Sci., 274, 359
Wijnen, 2007, Colors and pterin pigmentation of pierid butterfly wings, J. Insect Physiol., 53, 1206, 10.1016/j.jinsphys.2007.06.016
Tunström, 2023, Evidence for a single, ancient origin of a genus-wide alternative life history strategy, Sci. Adv., 9, eabq3713, 10.1126/sciadv.abq3713
Gerould, 1943, Genetic and Seasonal Variations of Orange Wing-Color in ‘Colias’ Butterflies, Proc. Am. Phil. Soc., 86, 405
Ficarrotta, 2022, A genetic switch for male UV iridescence in an incipient species pair of sulphur butterflies, Proc. Natl. Acad. Sci. USA, 119, 10.1073/pnas.2109255118
Silberglied, 1973, Ultraviolet Differences between the Sulphur Butterflies, Colias eurytheme and C. philodice, and a Possible Isolating Mechanism, Nature, 241, 406, 10.1038/241406a0
Grula, 1980, Some Characteristics of Hybrids Derived from the Sulfur Butterflies, Colias eurytheme and C. philodice: Phenotypic Effects of the X-Chromosome, Evolution, 34, 673
Grula, 1980, Aphrodisiac pheromones of the sulfur butterfliesColias eurytheme andC. Philodice (Lepidoptera, Pieridae), J. Chem. Ecol., 6, 241, 10.1007/BF00987543
Grula, 1979, The inheritance of pheromone production in the sulphur butterflies Colias eurytheme and C. Philodice, Heredity, 42, 359, 10.1038/hdy.1979.39
Grula, 1980, The effect of X-chromosome inheritance on mate-selection behavior in the sulfur butterflies, Colias eurytheme and C. philodice, Evolution, 34, 688, 10.2307/2408022
Presgraves, 2018, Evaluating genomic signatures of “the large X-effect” during complex speciation, Mol. Ecol., 27, 3822, 10.1111/mec.14777
Wang, 2004, An AFLP-Based Interspecific Linkage Map of Sympatric, Hybridizing Colias Butterflies, Genetics, 168, 215, 10.1534/genetics.104.028118
Weller, 2019, Quantitative color profiling of digital images with earth mover’s distance using the R package colordistance, PeerJ, 7, e6398, 10.7717/peerj.6398
Hovanitz, 1944, The Ecological Significance of the Color Phases of Colias Chrysotheme in North America, Ecology, 25, 45, 10.2307/1930761
Cockerham, 1986, Modifications in Estimating the Number of Genes for a Quantitative Character, Genetics, 114, 659, 10.1093/genetics/114.2.659
Otto, 2000, Detecting the undetected: estimating the total number of loci underlying a quantitative trait, Genetics, 156, 2093, 10.1093/genetics/156.4.2093
Broman, 2003, R/qtl: QTL mapping in experimental crosses, Bioinforma. Oxf. Engl., 19, 889, 10.1093/bioinformatics/btg112
Francescutti, 2022, Knockdowns of red Malphigian tubules reveal pigmentation roles in the milkweed bug, J. Exp. Zool. B Mol. Dev. Evol., 338, 382, 10.1002/jez.b.23123
Grant, 2016, An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila, G3, 6, 3185, 10.1534/g3.116.032508
Silberglied, 1978, Ultraviolet reflection and its behavioral role in the courtship of the sulfur butterflies Colias eurytheme and C. philodice (Lepidoptera, Pieridae), Behav. Ecol. Sociobiol., 3, 203, 10.1007/BF00296311
Wilts, 2017, Extreme Refractive Index Wing Scale Beads Containing Dense Pterin Pigments Cause the Bright Colors of Pierid Butterflies, Adv. Opt. Mater., 5, 10.1002/adom.201600879
Figon, 2021, Catabolism of lysosome-related organelles in color-changing spiders supports intracellular turnover of pigments, Proc. Natl. Acad. Sci. USA, 118, 10.1073/pnas.2103020118
Ghiradella, 2010, Chapter 4 - Insect Cuticular Surface Modifications: Scales and Other Structural Formations, 38.135, 10.1016/S0065-2806(10)38006-4
Fenner, 2022, Seasonal polyphenism of wing colors and its influence on sulphur butterfly diversification, bioRxiv
De Castro, 2018, bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster, PLoS Genet., 14, 10.1371/journal.pgen.1007573
Kopp, 2003, Quantitative trait loci responsible for variation in sexually dimorphic traits in Drosophila melanogaster, Genetics, 163, 771, 10.1093/genetics/163.2.771
Rogers, 2013, Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity, PLoS Genet., 9, 10.1371/journal.pgen.1003740
Porter, 2007, Parallel evolution in sympatric, hybridizing species: performance of Colias butterflies on their introduced host plants, Entomol. Exp. Appl., 124, 77, 10.1111/j.1570-7458.2007.00553.x
Nokelainen, 2022, Genetic colour variation visible for predators and conspecifics is concealed from humans in a polymorphic moth, J. Evol. Biol., 35, 467, 10.1111/jeb.13994
Boyle, 2017, An expanded view of complex traits: from polygenic to omnigenic, Cell, 169, 1177, 10.1016/j.cell.2017.05.038
Yong, 2015, Genetic Architecture of Conspicuous Red Ornaments in Female Threespine Stickleback, G3, 6, 579, 10.1534/g3.115.024505
Xu, 2003, Theoretical Basis of the Beavis Effect, Genetics, 165, 2259, 10.1093/genetics/165.4.2259
Mackay, 2009, The genetics of quantitative traits: challenges and prospects, Nat. Rev. Genet., 10, 565, 10.1038/nrg2612
Hoffmann, 1974, Environmental control of seasonal variation in the butterfly Colias eurytheme: Effects of photoperiod and temperature on pteridine pigmentation, J. Insect Physiol., 20, 1913, 10.1016/0022-1910(74)90098-5
Remington, 1954, The genetics of Colias (Lepidoptera), Adv. Genet., 6, 403, 10.1016/S0065-2660(08)60133-9
Jacobs, 1994, Seasonal Adaptation vs Physiological constraint: Photoperiod, Thermoregulation and Flight in Colias Butterflies, Funct. Ecol., 8, 366, 10.2307/2389830
Kingsolver, 1995, Fitness consequencs of seasonal polyphenism in western white butterflies, Evolution, 49, 942, 10.2307/2410416
Kingsolver, 1991, Seasonal Polyphenism in Wing-Melanin Pattern and Thermoregulatory Adaptation in Pieris Butterflies, Am. Nat., 137, 816, 10.1086/285195
Beldade, 2011, Evolution and molecular mechanisms of adaptive developmental plasticity, Mol. Ecol., 20, 1347, 10.1111/j.1365-294X.2011.05016.x
Lafuente, 2019, Genomics of Developmental Plasticity in Animals, Front. Genet., 10, 720, 10.3389/fgene.2019.00720
Oster, 1954, New mutants. red: Red Malpighian tubules, Drosoph. Inf. Serv., 28, 77
Henikoff, 1979, Position Effects and Variegation Enhancers in an Autosomal Region of Drosophila melanogaster, Genetics, 93, 105, 10.1093/genetics/93.1.105
Breen, 1991, Molecular characterization of the trithorax gene, a positive regulator of homeotic gene expression in Drosophila, Mech. Dev., 35, 113, 10.1016/0925-4773(91)90062-B
Figon, 2021, Barriers and Promises of the Developing Pigment Organelle Field, Integr. Comp. Biol., 61, 1481, 10.1093/icb/icab164
Aslaksen, 1957, Untersuchungen über eine Mutante (red) von Drosophila melanogaster mit roten Malpighischen Gefässen, Arch Julius Klaus-Stift Vererbungsforsch Sozialanthropol U Rassenhyg, 32, 464
Ferré, 1986, Pigment patterns in mutants affecting the biosynthesis of pteridines and xanthommatin in Drosophila melanogaster, Biochem. Genet., 24, 545, 10.1007/BF00504334
Wessing, 1966, Natur und Bildung des roten Farbstoffes in den Nierentubuli der Mutante “red“ von Drosophila melanogaster, Z. Naturforsch. B Chem. Sci., 21, 1219, 10.1515/znb-1966-1222
Shoup, 1966, The development of pigment granules in the eyes of wild type and mutant Drosophila melanogaster, J. Cell Biol., 29, 223, 10.1083/jcb.29.2.223
Tearle, 1991, Tissue specific effects of ommochrome pathway mutations in Drosophila melanogaster, Genet. Res., 57, 257, 10.1017/S0016672300029402
Allan, 2005, Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles, Physiol. Genom., 22, 128, 10.1152/physiolgenomics.00233.2004
Sun-Wada, 2003, Lysosome and lysosome-related organelles responsible for specialized functions in higher organisms, with special emphasis on vacuolar-type proton ATPase, Cell Struct. Funct., 28, 455, 10.1247/csf.28.455
Yan, 2009, The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila, Dev. Cell, 17, 387, 10.1016/j.devcel.2009.07.001
Merkulova, 2015, Mapping the H+ (V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation, Sci. Rep., 5, 10.1038/srep14827
Castroflorio, 2021, The Ncoa7 locus regulates V-ATPase formation and function, neurodevelopment and behaviour, Cell. Mol. Life Sci., 78, 3503, 10.1007/s00018-020-03721-6
Eaton, 2021, The evolutionary conserved TLDc domain defines a new class of (H+)V-ATPase interacting proteins, Sci. Rep., 11
Tan, 2022, CryoEM of endogenous mammalian V-ATPase interacting with the TLDc protein mEAK-7, Life Sci. Alliance, 5, 10.26508/lsa.202201527
Saenko, 2013, Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsumalizards, BMC Biol., 11, 105, 10.1186/1741-7007-11-105
Ramos-Balderas, 2013, The zebrafish mutants for the V-ATPase subunits d, ac45, E, H and c and their variable pigment dilution phenotype, BMC Res. Notes, 6, 39, 10.1186/1756-0500-6-39
Wakamatsu, 2021, Chemical and biochemical control of skin pigmentation with special emphasis on mixed melanogenesis, Pigment Cell Melanoma Res., 34, 730, 10.1111/pcmr.12970
Fraïsse, 2021, The rates of introgression and barriers to genetic exchange between hybridizing species: sex chromosomes vs autosomes, Genetics, 217, iyaa025, 10.1093/genetics/iyaa025
Wilson Sayres, 2018, Genetic Diversity on the Sex Chromosomes, Genome Biol. Evol., 10, 1064, 10.1093/gbe/evy039
Butlin, 2018, Coupling, Reinforcement, and Speciation, Am. Nat., 191, 155, 10.1086/695136
Unbehend, 2021, bric à brac controls sex pheromone choice by male European corn borer moths, Nat. Commun., 12, 2818, 10.1038/s41467-021-23026-x
Estalles, 2022, Concerted variation in melanogenesis genes underlies emergent patterning of plumage in capuchino seedeaters, Proc. Biol. Sci., 289
Wang, 2005, Introgression and genomic differentiation in sympatric, hybridizing Colias butterflies, Dr. Diss.
MacLachlan, 2020, Building a shared resource HPC Center across University Schools and Institutes: A case study, arXiv
Ren, 2020, Convergent Evolution of Broadband Reflectors Underlies Metallic Coloration in Butterflies, Front. Ecol. Evol., 8, 10.3389/fevo.2020.00206
Chavent, 2012, ClustOfVar: An R Package for the Clustering of Variables, J. Stat. Software, 50, 1