Genetics of yellow-orange color variation in a pair of sympatric sulphur butterflies

Cell Reports - Tập 42 - Trang 112820 - 2023
Joseph J. Hanly1,2, Caroline M. Francescutti1, Ling S. Loh3, Olaf B.W.H. Corning1, Derek J. Long3, Marshall A. Nakatani1, Adam H. Porter4, Arnaud Martin1
1Department of Biological Sciences, The George Washington University, Washington DC, USA
2Smithsonian Tropical Research Institute, Gamboa, Panama
3Department of Biological Sciences, The George Washington University, Washington, DC, USA
4Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA

Tài liệu tham khảo

Orteu, 2020, The genomics of coloration provides insights into adaptive evolution, Nat. Rev. Genet., 21, 461, 10.1038/s41576-020-0234-z Sapir, 2021, What Maintains Flower Colour Variation within Populations?, Trends Ecol. Evol., 36, 507, 10.1016/j.tree.2021.01.011 Wellenreuther, 2014, Sexual selection and genetic colour polymorphisms in animals, Mol. Ecol., 23, 5398, 10.1111/mec.12935 San-Jose, 2017, Genomics of coloration in natural animal populations, Philos. Trans. R. Soc. Lond. B Biol. Sci., 372, 10.1098/rstb.2016.0337 Andrade, 2019, Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard, Proc. Natl. Acad. Sci. USA, 116, 5633, 10.1073/pnas.1820320116 Gazda, 2020, A genetic mechanism for sexual dichromatism in birds, Science, 368, 1270, 10.1126/science.aba0803 Westerman, 2018, Aristaless Controls Butterfly Wing Color Variation Used in Mimicry and Mate Choice, Curr. Biol., 28, 3469, 10.1016/j.cub.2018.08.051 Morgan, 2018, Genome-wide study of hair colour in UK Biobank explains most of the SNP heritability, Nat. Commun., 9, 5271, 10.1038/s41467-018-07691-z Albertson, 2014, Genetic basis of continuous variation in the levels and modular inheritance of pigmentation in cichlid fishes, Mol. Ecol., 23, 5135, 10.1111/mec.12900 Brien, 2022, The genetic basis of structural colour variation in mimetic Heliconius butterflies, Philos. Trans. R. Soc. Lond. B Biol. Sci., 377, 10.1098/rstb.2020.0505 Brien, 2019, Phenotypic variation in Heliconius erato crosses shows that iridescent structural colour is sex-linked and controlled by multiple genes, Interface Focus, 9, 10.1098/rsfs.2018.0047 Elkin, 2022 Figon, 2019, Ommochromes in invertebrates: biochemistry and cell biology, Biol. Rev., 94, 156, 10.1111/brv.12441 Futahashi, 2021, Pigments in Insects Spiewak, 2018, Evolution of Endothelin signaling and diversification of adult pigment pattern in Danio fishes, PLoS Genet., 14, 10.1371/journal.pgen.1007538 Toomey, 2022, A mechanism for red coloration in vertebrates, Curr. Biol., 32, 4201, 10.1016/j.cub.2022.08.013 Twyman, 2016, Seeing red to being red: conserved genetic mechanism for red cone oil droplets and co-option for red coloration in birds and turtles, Proc. Biol. Sci., 283 Martin, 2017, Morphological Evolution Repeatedly Caused by Mutations in Signaling Ligand Genes Rockman, 2012, The QTN program and the alleles that matter for evolution: all that’s gold does not glitter, Evolution, 66, 1, 10.1111/j.1558-5646.2011.01486.x Roulin, 2016, Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration, Biol. Rev. Camb. Phil. Soc., 91, 328, 10.1111/brv.12171 Svensson, 2011, Carotenoid-based signals in behavioural ecology: a review, Beyond Behav., 148, 131 Burraco, 2022, Ionizing radiation and melanism in Chornobyl tree frogs, Evol. Appl., 15, 1469, 10.1111/eva.13476 Orr, 1998, The Population Genetics of Adaptation: The Distribution of Factors Fixed During Adaptive Evolution, Evolution, 52, 935, 10.2307/2411226 Dembeck, 2015, Genetic Architecture of Abdominal Pigmentation in Drosophila melanogaster, PLoS Genet., 11, 10.1371/journal.pgen.1005163 Carbone, 2005, Quantitative Trait Loci Affecting the Difference in Pigmentation Between Drosophila yakuba and D. santomea, Genetics, 171, 211, 10.1534/genetics.105.044412 Yeh, 2014, The Genetic Architecture of Coordinately Evolving Male Wing Pigmentation and Courtship Behavior in Drosophila elegans and Drosophila gunungcola, G3, 4, 2079, 10.1534/g3.114.013037 Schielzeth, 2012, QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait, Evolution, 66, 18, 10.1111/j.1558-5646.2011.01431.x Slate, 2013, From beavis to beak color: a simulation study to examine how much qtl mapping can reveal about the genetic architecture of quantitative traits, Evolution, 67, 1251 Kardos, 2016, Whole-genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations, Mol. Ecol. Resour., 16, 727, 10.1111/1755-0998.12498 Ju, 2021, The evolution of skin pigmentation-associated variation in West Eurasia, Proc. Natl. Acad. Sci. USA, 118, 10.1073/pnas.2009227118 Martin, 2017, An Unexpectedly Complex Architecture for Skin Pigmentation in Africans, Cell, 171, 1340, 10.1016/j.cell.2017.11.015 Simcoe, 2021, Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color, Sci. Adv., 7, 10.1126/sciadv.abd1239 Andrade, 2021, Pterin-based pigmentation in animals, Biol. Lett., 17, 10.1098/rsbl.2021.0221 Vargas-Lowman, 2019, Cooption of the pteridine biosynthesis pathway underlies the diversification of embryonic colors in water striders, Proc. Natl. Acad. Sci. USA, 116, 19046, 10.1073/pnas.1908316116 Woronik, 2019, A transposable element insertion is associated with an alternative life history strategy, Nat. Commun., 10, 5757, 10.1038/s41467-019-13596-2 Morehouse, 2007, Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies, Proc. Biol. Sci., 274, 359 Wijnen, 2007, Colors and pterin pigmentation of pierid butterfly wings, J. Insect Physiol., 53, 1206, 10.1016/j.jinsphys.2007.06.016 Tunström, 2023, Evidence for a single, ancient origin of a genus-wide alternative life history strategy, Sci. Adv., 9, eabq3713, 10.1126/sciadv.abq3713 Gerould, 1943, Genetic and Seasonal Variations of Orange Wing-Color in ‘Colias’ Butterflies, Proc. Am. Phil. Soc., 86, 405 Ficarrotta, 2022, A genetic switch for male UV iridescence in an incipient species pair of sulphur butterflies, Proc. Natl. Acad. Sci. USA, 119, 10.1073/pnas.2109255118 Silberglied, 1973, Ultraviolet Differences between the Sulphur Butterflies, Colias eurytheme and C. philodice, and a Possible Isolating Mechanism, Nature, 241, 406, 10.1038/241406a0 Grula, 1980, Some Characteristics of Hybrids Derived from the Sulfur Butterflies, Colias eurytheme and C. philodice: Phenotypic Effects of the X-Chromosome, Evolution, 34, 673 Grula, 1980, Aphrodisiac pheromones of the sulfur butterfliesColias eurytheme andC. Philodice (Lepidoptera, Pieridae), J. Chem. Ecol., 6, 241, 10.1007/BF00987543 Grula, 1979, The inheritance of pheromone production in the sulphur butterflies Colias eurytheme and C. Philodice, Heredity, 42, 359, 10.1038/hdy.1979.39 Grula, 1980, The effect of X-chromosome inheritance on mate-selection behavior in the sulfur butterflies, Colias eurytheme and C. philodice, Evolution, 34, 688, 10.2307/2408022 Presgraves, 2018, Evaluating genomic signatures of “the large X-effect” during complex speciation, Mol. Ecol., 27, 3822, 10.1111/mec.14777 Wang, 2004, An AFLP-Based Interspecific Linkage Map of Sympatric, Hybridizing Colias Butterflies, Genetics, 168, 215, 10.1534/genetics.104.028118 Weller, 2019, Quantitative color profiling of digital images with earth mover’s distance using the R package colordistance, PeerJ, 7, e6398, 10.7717/peerj.6398 Hovanitz, 1944, The Ecological Significance of the Color Phases of Colias Chrysotheme in North America, Ecology, 25, 45, 10.2307/1930761 Cockerham, 1986, Modifications in Estimating the Number of Genes for a Quantitative Character, Genetics, 114, 659, 10.1093/genetics/114.2.659 Otto, 2000, Detecting the undetected: estimating the total number of loci underlying a quantitative trait, Genetics, 156, 2093, 10.1093/genetics/156.4.2093 Broman, 2003, R/qtl: QTL mapping in experimental crosses, Bioinforma. Oxf. Engl., 19, 889, 10.1093/bioinformatics/btg112 Francescutti, 2022, Knockdowns of red Malphigian tubules reveal pigmentation roles in the milkweed bug, J. Exp. Zool. B Mol. Dev. Evol., 338, 382, 10.1002/jez.b.23123 Grant, 2016, An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila, G3, 6, 3185, 10.1534/g3.116.032508 Silberglied, 1978, Ultraviolet reflection and its behavioral role in the courtship of the sulfur butterflies Colias eurytheme and C. philodice (Lepidoptera, Pieridae), Behav. Ecol. Sociobiol., 3, 203, 10.1007/BF00296311 Wilts, 2017, Extreme Refractive Index Wing Scale Beads Containing Dense Pterin Pigments Cause the Bright Colors of Pierid Butterflies, Adv. Opt. Mater., 5, 10.1002/adom.201600879 Figon, 2021, Catabolism of lysosome-related organelles in color-changing spiders supports intracellular turnover of pigments, Proc. Natl. Acad. Sci. USA, 118, 10.1073/pnas.2103020118 Ghiradella, 2010, Chapter 4 - Insect Cuticular Surface Modifications: Scales and Other Structural Formations, 38.135, 10.1016/S0065-2806(10)38006-4 Fenner, 2022, Seasonal polyphenism of wing colors and its influence on sulphur butterfly diversification, bioRxiv De Castro, 2018, bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster, PLoS Genet., 14, 10.1371/journal.pgen.1007573 Kopp, 2003, Quantitative trait loci responsible for variation in sexually dimorphic traits in Drosophila melanogaster, Genetics, 163, 771, 10.1093/genetics/163.2.771 Rogers, 2013, Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity, PLoS Genet., 9, 10.1371/journal.pgen.1003740 Porter, 2007, Parallel evolution in sympatric, hybridizing species: performance of Colias butterflies on their introduced host plants, Entomol. Exp. Appl., 124, 77, 10.1111/j.1570-7458.2007.00553.x Nokelainen, 2022, Genetic colour variation visible for predators and conspecifics is concealed from humans in a polymorphic moth, J. Evol. Biol., 35, 467, 10.1111/jeb.13994 Boyle, 2017, An expanded view of complex traits: from polygenic to omnigenic, Cell, 169, 1177, 10.1016/j.cell.2017.05.038 Yong, 2015, Genetic Architecture of Conspicuous Red Ornaments in Female Threespine Stickleback, G3, 6, 579, 10.1534/g3.115.024505 Xu, 2003, Theoretical Basis of the Beavis Effect, Genetics, 165, 2259, 10.1093/genetics/165.4.2259 Mackay, 2009, The genetics of quantitative traits: challenges and prospects, Nat. Rev. Genet., 10, 565, 10.1038/nrg2612 Hoffmann, 1974, Environmental control of seasonal variation in the butterfly Colias eurytheme: Effects of photoperiod and temperature on pteridine pigmentation, J. Insect Physiol., 20, 1913, 10.1016/0022-1910(74)90098-5 Remington, 1954, The genetics of Colias (Lepidoptera), Adv. Genet., 6, 403, 10.1016/S0065-2660(08)60133-9 Jacobs, 1994, Seasonal Adaptation vs Physiological constraint: Photoperiod, Thermoregulation and Flight in Colias Butterflies, Funct. Ecol., 8, 366, 10.2307/2389830 Kingsolver, 1995, Fitness consequencs of seasonal polyphenism in western white butterflies, Evolution, 49, 942, 10.2307/2410416 Kingsolver, 1991, Seasonal Polyphenism in Wing-Melanin Pattern and Thermoregulatory Adaptation in Pieris Butterflies, Am. Nat., 137, 816, 10.1086/285195 Beldade, 2011, Evolution and molecular mechanisms of adaptive developmental plasticity, Mol. Ecol., 20, 1347, 10.1111/j.1365-294X.2011.05016.x Lafuente, 2019, Genomics of Developmental Plasticity in Animals, Front. Genet., 10, 720, 10.3389/fgene.2019.00720 Oster, 1954, New mutants. red: Red Malpighian tubules, Drosoph. Inf. Serv., 28, 77 Henikoff, 1979, Position Effects and Variegation Enhancers in an Autosomal Region of Drosophila melanogaster, Genetics, 93, 105, 10.1093/genetics/93.1.105 Breen, 1991, Molecular characterization of the trithorax gene, a positive regulator of homeotic gene expression in Drosophila, Mech. Dev., 35, 113, 10.1016/0925-4773(91)90062-B Figon, 2021, Barriers and Promises of the Developing Pigment Organelle Field, Integr. Comp. Biol., 61, 1481, 10.1093/icb/icab164 Aslaksen, 1957, Untersuchungen über eine Mutante (red) von Drosophila melanogaster mit roten Malpighischen Gefässen, Arch Julius Klaus-Stift Vererbungsforsch Sozialanthropol U Rassenhyg, 32, 464 Ferré, 1986, Pigment patterns in mutants affecting the biosynthesis of pteridines and xanthommatin in Drosophila melanogaster, Biochem. Genet., 24, 545, 10.1007/BF00504334 Wessing, 1966, Natur und Bildung des roten Farbstoffes in den Nierentubuli der Mutante “red“ von Drosophila melanogaster, Z. Naturforsch. B Chem. Sci., 21, 1219, 10.1515/znb-1966-1222 Shoup, 1966, The development of pigment granules in the eyes of wild type and mutant Drosophila melanogaster, J. Cell Biol., 29, 223, 10.1083/jcb.29.2.223 Tearle, 1991, Tissue specific effects of ommochrome pathway mutations in Drosophila melanogaster, Genet. Res., 57, 257, 10.1017/S0016672300029402 Allan, 2005, Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles, Physiol. Genom., 22, 128, 10.1152/physiolgenomics.00233.2004 Sun-Wada, 2003, Lysosome and lysosome-related organelles responsible for specialized functions in higher organisms, with special emphasis on vacuolar-type proton ATPase, Cell Struct. Funct., 28, 455, 10.1247/csf.28.455 Yan, 2009, The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila, Dev. Cell, 17, 387, 10.1016/j.devcel.2009.07.001 Merkulova, 2015, Mapping the H+ (V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation, Sci. Rep., 5, 10.1038/srep14827 Castroflorio, 2021, The Ncoa7 locus regulates V-ATPase formation and function, neurodevelopment and behaviour, Cell. Mol. Life Sci., 78, 3503, 10.1007/s00018-020-03721-6 Eaton, 2021, The evolutionary conserved TLDc domain defines a new class of (H+)V-ATPase interacting proteins, Sci. Rep., 11 Tan, 2022, CryoEM of endogenous mammalian V-ATPase interacting with the TLDc protein mEAK-7, Life Sci. Alliance, 5, 10.26508/lsa.202201527 Saenko, 2013, Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsumalizards, BMC Biol., 11, 105, 10.1186/1741-7007-11-105 Ramos-Balderas, 2013, The zebrafish mutants for the V-ATPase subunits d, ac45, E, H and c and their variable pigment dilution phenotype, BMC Res. Notes, 6, 39, 10.1186/1756-0500-6-39 Wakamatsu, 2021, Chemical and biochemical control of skin pigmentation with special emphasis on mixed melanogenesis, Pigment Cell Melanoma Res., 34, 730, 10.1111/pcmr.12970 Fraïsse, 2021, The rates of introgression and barriers to genetic exchange between hybridizing species: sex chromosomes vs autosomes, Genetics, 217, iyaa025, 10.1093/genetics/iyaa025 Wilson Sayres, 2018, Genetic Diversity on the Sex Chromosomes, Genome Biol. Evol., 10, 1064, 10.1093/gbe/evy039 Butlin, 2018, Coupling, Reinforcement, and Speciation, Am. Nat., 191, 155, 10.1086/695136 Unbehend, 2021, bric à brac controls sex pheromone choice by male European corn borer moths, Nat. Commun., 12, 2818, 10.1038/s41467-021-23026-x Estalles, 2022, Concerted variation in melanogenesis genes underlies emergent patterning of plumage in capuchino seedeaters, Proc. Biol. Sci., 289 Wang, 2005, Introgression and genomic differentiation in sympatric, hybridizing Colias butterflies, Dr. Diss. MacLachlan, 2020, Building a shared resource HPC Center across University Schools and Institutes: A case study, arXiv Ren, 2020, Convergent Evolution of Broadband Reflectors Underlies Metallic Coloration in Butterflies, Front. Ecol. Evol., 8, 10.3389/fevo.2020.00206 Chavent, 2012, ClustOfVar: An R Package for the Clustering of Variables, J. Stat. Software, 50, 1