Recent progress in 2D materials for flexible supercapacitors

Journal of Energy Chemistry - Tập 27 - Trang 57-72 - 2018
Yan Han1,2, Yu Ge2, Yunfeng Chao2, Caiyun Wang2, Gordon G. Wallace2
1Energy & Materials Engineering Centre, College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
2ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, NSW 2500, Australia

Tài liệu tham khảo

Gubbi, 2013, Fut. Gener. Comput. Syst., 29, 1645, 10.1016/j.future.2013.01.010 Carpi, 2005, IEEE Trans. Inf. Technol. Biomed., 9, 295, 10.1109/TITB.2005.854514 Rogers, 2010, Science, 327, 1603, 10.1126/science.1182383 Lipomi, 2011, Energy Environ. Sci., 4, 3314, 10.1039/c1ee01881g Nishide, 2008, Science, 319, 737, 10.1126/science.1151831 Larcher, 2015, Nat. Chem., 7, 19, 10.1038/nchem.2085 Armand, 2008, Nature, 451, 652, 10.1038/451652a Poizot, 2011, Energy Environ. Sci., 4, 2003, 10.1039/c0ee00731e Chen, 2008, ChemSusChem, 1, 348, 10.1002/cssc.200700161 Tarascon, 2001, Nature, 414, 359, 10.1038/35104644 Goodenough, 2009, Chem. Mater., 22, 587, 10.1021/cm901452z Scrosati, 2010, J. Power Sources, 195, 2419, 10.1016/j.jpowsour.2009.11.048 Etacheri, 2011, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b Zhou, 2014, Energy Environ. Sci., 7, 1307, 10.1039/C3EE43182G Gwon, 2014, Energy Environ. Sci., 7, 538, 10.1039/C3EE42927J Bruce, 2008, Angew. Chem. Int. Ed., 47, 2930, 10.1002/anie.200702505 Whittingham, 2004, Chem. Rev., 104, 4271, 10.1021/cr020731c Reddy, 2013, Chem. Rev., 113, 5364, 10.1021/cr3001884 Song, 2013, Energy Environ. Sci., 6, 2280, 10.1039/c3ee40709h Liang, 2012, Adv. Energy Mater., 2, 742, 10.1002/aenm.201100795 Novák, 1997, Chem. Rev., 97, 207, 10.1021/cr941181o Holze, 2014, Electrochim. Acta, 122, 93, 10.1016/j.electacta.2013.08.100 Wang, 2014, Adv. Mater., 26, 4763, 10.1002/adma.201400910 Xie, 2014, Adv. Mater., 26, 3592, 10.1002/adma.201305919 Wang, 2015, Electrochim. Acta, 175, 87, 10.1016/j.electacta.2015.04.067 Jost, 2014, J. Mater. Chem. A, 2, 10776, 10.1039/c4ta00203b Nyholm, 2011, Adv. Mater., 23, 3751 Zhang, 2015, Chem. Soc. Rev., 44, 5181, 10.1039/C5CS00174A Lee, 2013, Energy Environ. Sci., 6, 2414, 10.1039/c3ee24260a Conway, 1991, J. Electrochem. Soc., 138, 1539, 10.1149/1.2085829 Wang, 2013, Adv. Mater., 25, 5336, 10.1002/adma.201301932 Wang, 2016, Chem. Soc. Rev., 45, 5925, 10.1039/C5CS00580A Yu, 2015, Energy Environ. Sci, 8, 702, 10.1039/C4EE03229B Choi, 2015, Nanomaterials, 5, 906, 10.3390/nano5020906 Vangari, 2013, J. Energy Eng., 139, 72, 10.1061/(ASCE)EY.1943-7897.0000102 Zhi, 2013, Nanoscale, 5, 72, 10.1039/C2NR32040A Aricò, 2005, Nat. Mater., 4, 366, 10.1038/nmat1368 He, 2013, ACS Nano, 7, 174, 10.1021/nn304833s Liu, 2012, Adv. Mater., 24, 1089, 10.1002/adma.201104691 Lu, 2013, Angew. Chem. Int. Ed. Engl., 52, 1882, 10.1002/anie.201203201 Huang, 2012, Adv. Mater., 24, 5979, 10.1002/adma.201201587 Fan, 2012, Carbon, 50, 1699, 10.1016/j.carbon.2011.12.016 Wang, 2014, ACS Appl. Mater. Interfaces, 6, 6739, 10.1021/am500464n Fan, 2014, CrystEngComm, 16, 10389, 10.1039/C4CE01242A Yu, 2016, Adv. Energy Mater., 6 Liu, 2017, Appl. Mater. Today, 8, 104, 10.1016/j.apmt.2017.05.002 Peng, 2014, Chem. Soc. Rev., 43, 3303, 10.1039/c3cs60407a Kim, 2017, Nano Today, 14, 100, 10.1016/j.nantod.2017.04.008 Wang, 2015, Chem. Soc. Rev., 44, 2664, 10.1039/C4CS00287C Khan, 2017, Bull. Chem. Soc. Jpn., 90, 627, 10.1246/bcsj.20170043 Zhang, 2015, ACS Nano, 9, 9451, 10.1021/acsnano.5b05040 Yang, 2016, Nano Today, 11, 793, 10.1016/j.nantod.2016.10.004 Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896 Dean, 2010, Nat. Nanotechnol., 5, 722, 10.1038/nnano.2010.172 Li, 2012, Small, 8, 63, 10.1002/smll.201101016 Li, 2014, Acc. Chem. Res., 47, 1067, 10.1021/ar4002312 Late, 2012, Adv. Funct. Mater., 22, 1894, 10.1002/adfm.201102913 Paton, 2014, Nat. Mater., 13, 624, 10.1038/nmat3944 Hernandez, 2008, Nat. Nanotechnol., 3, 563, 10.1038/nnano.2008.215 Khan, 2013, Nanoscale, 5, 581, 10.1039/C2NR33049K Hanlon, 2014, Chem. Mater., 26, 1751, 10.1021/cm500271u Brent, 2014, Chem. Commun. (Camb), 50, 13338, 10.1039/C4CC05752J Novoselov, 2012, Nature, 490, 192, 10.1038/nature11458 Viculis, 2005, J. Mater. Chem., 15, 974, 10.1039/b413029d Acerce, 2015, Nat. Nanotechnol., 10, 313, 10.1038/nnano.2015.40 Zhu, 2016, Nano Lett., 16, 742, 10.1021/acs.nanolett.5b04610 Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s Yi, 2015, J. Mater. Chem. A, 3, 11700, 10.1039/C5TA00252D Coleman, 2011, Science, 331, 568, 10.1126/science.1194975 Smith, 2011, Adv. Mater., 23, 3944, 10.1002/adma.201102584 Zeng, 2012, Angew. Chem. Int. Ed. Engl., 51, 9052, 10.1002/anie.201204208 Zeng, 2011, Angew. Chem. Int. Ed., 50, 11093, 10.1002/anie.201106004 Parvez, 2014, J. Am. Chem. Soc., 136, 6083, 10.1021/ja5017156 Wu, 2013, Nat. Commun., 4, 2431, 10.1038/ncomms3431 Lin, 2013, J. Am. Chem. Soc., 135, 5144, 10.1021/ja400041f Feng, 2011, J. Am. Chem. Soc., 133, 17832, 10.1021/ja207176c Hummers Jr, 1958, J. Am. Chem. Soc., 80, 10.1021/ja01539a017 Allen, 2010, Chem. Rev., 110, 132, 10.1021/cr900070d Li, 2008, Nat. Nano, 3, 101, 10.1038/nnano.2007.451 Zangmeister, 2010, Chem. Mater., 22, 5625, 10.1021/cm102005m Guo, 2009, ACS Nano, 3, 2653, 10.1021/nn900227d Shi, 2015, Chem. Soc. Rev., 44, 2744, 10.1039/C4CS00256C Ambrosi, 2016, Chem. Soc. Rev., 45, 2458, 10.1039/C6CS00136J Ji, 2015, Chem. Soc. Rev., 44, 2587, 10.1039/C4CS00258J Tan, 2015, Nat. Commun., 6, 7873, 10.1038/ncomms8873 Li, 2009, Science, 324, 1312, 10.1126/science.1171245 Li, 2011, J. Am. Chem. Soc., 133, 2816, 10.1021/ja109793s Song, 2010, Nano Lett., 10, 3209, 10.1021/nl1022139 Wang, 2015, ACS Nano, 9, 5246, 10.1021/acsnano.5b00655 Ning, 2012, Nanotechnology, 23 Lee, 2012, Adv. Mater., 24, 2320, 10.1002/adma.201104798 Lu, 2014, Nano Lett., 14, 2419, 10.1021/nl5000906 Chang, 2014, ACS Nano, 8, 8582, 10.1021/nn503287m Gutierrez, 2013, Nano Lett., 13, 3447, 10.1021/nl3026357 Huang, 2013, ACS Nano, 8, 923, 10.1021/nn405719x Zhang, 2013, ACS Nano, 7, 8963, 10.1021/nn403454e Choucair, 2009, Nat. Nanotechnol., 4, 30, 10.1038/nnano.2008.365 Du, 2012, Nat. Commun., 3, 1177, 10.1038/ncomms2181 Sun, 2014, Nat. Commun., 5, 3813, 10.1038/ncomms4813 Wu, 2014, Angew. Chem. Int. Ed. Engl., 53, 8929, 10.1002/anie.201403655 Mahler, 2014, J. Am. Chem. Soc., 136, 14121, 10.1021/ja506261t Son, 2011, Adv. Mater., 23, 3214, 10.1002/adma.201101334 Eigler, 2013, Adv. Mater., 25, 3583, 10.1002/adma.201300155 Fang, 2013, J. Am. Chem. Soc., 135, 1524, 10.1021/ja310849c Zhang, 2013, Inorg. Chem., 52, 9807, 10.1021/ic400735f Liang, 2015, Nano Lett., 15, 1421, 10.1021/nl504872s Zhang, 2017, J. Alloys Compd., 711, 31, 10.1016/j.jallcom.2017.03.348 Fan, 2015, Nat. Commun., 6, 6571, 10.1038/ncomms7571 Huang, 2011, Nat. Nanotechnol., 6, 28, 10.1038/nnano.2010.235 Gao, 2014, Angew. Chem. Int. Ed. Engl, 53, 12789, 10.1002/anie.201407836 Sun, 2012, Nat. Commun., 3, 1057, 10.1038/ncomms2066 Yoo, 2014, J. Am. Chem. Soc., 136, 14670, 10.1021/ja5079943 Geim, 2007, Nat. Mater., 6, 183, 10.1038/nmat1849 Shao, 2015, Chem. Soc. Rev., 44, 3639, 10.1039/C4CS00316K Yang, 2011, Adv. Mater., 23, 2833, 10.1002/adma.201100261 Yang, 2013, Science, 341, 534, 10.1126/science.1239089 Xu, 2013, ACS Nano, 7, 4042, 10.1021/nn4000836 Yu, 2010, Appl. Phys. Lett., 96 Weng, 2011, Adv. Energy Mater., 1, 917, 10.1002/aenm.201100312 Zheng, 2017, ACS Nano, 11, 2171, 10.1021/acsnano.6b08435 Zhao, 2015, Electrochim. Acta, 172, 12, 10.1016/j.electacta.2015.05.019 Meng, 2013, Adv. Mater., 25, 2326, 10.1002/adma.201300132 Li, 2013, Chem. Commun., 49, 291, 10.1039/C2CC37396C Kou, 2014, Nat. Commun., 5, 3754, 10.1038/ncomms4754 Wang, 2015, Energy Environ. Sci., 8, 790, 10.1039/C4EE03685A Chee, 2016, J. Phys. Chem. C, 120, 4153, 10.1021/acs.jpcc.5b10187 Tan, 2017, J. Mater. Chem. A, 5, 17777, 10.1039/C7TA05759H Wang, 2009, Chem. Mater., 21, 2604, 10.1021/cm900764n Dikin, 2007, Nature, 448, 457, 10.1038/nature06016 Wang, 2012, Small, 8, 452, 10.1002/smll.201101719 Qiu, 2010, Chem. – A Eur. J., 16, 10653, 10.1002/chem.201001771 Huang, 2014, J. Mater. Chem. A, 2, 968, 10.1039/C3TA14511E Shu, 2014, J. Mater. Chem. A, 2, 1325, 10.1039/C3TA13660D Wu, 2010, ACS Nano, 4, 1963, 10.1021/nn1000035 Liu, 2015, J. Chem., 5, 17045 Ge, 2015, RSC Adv., 5, 102643, 10.1039/C5RA21100J Li, 2014, ACS Appl. Mater. Interface, 6, 16679, 10.1021/am503572w Sumboja, 2013, Adv. Mater., 25, 2809, 10.1002/adma.201205064 Li, 2014, Adv. Funct. Mater., 24, 7495, 10.1002/adfm.201402442 Chen, 2012, Chem. Commun., 48, 7149, 10.1039/c2cc32189k Choi, 2012, ACS Nano, 6, 4020, 10.1021/nn3003345 Cao, 2011, Small, 7, 3163, 10.1002/smll.201100990 Yu, 2014, J. Mater. Chem. A, 2, 14413, 10.1039/C4TA02721C Yan, 2014, J. Mater. Chem. A, 2, 16786, 10.1039/C4TA03057E Lee, 2010, Angew. Chem. Int. Ed., 49, 10084, 10.1002/anie.201006240 Li, 2014, Adv. Mater., 26, 4789, 10.1002/adma.201400657 Niu, 2012, Adv. Mater., 24, 4144, 10.1002/adma.201200197 Xiong, 2015, Adv. Mater., 27, 4469, 10.1002/adma.201501983 Maiti, 2014, Adv. Mater., 26, 615, 10.1002/adma.201303503 Zhang, 2012, Nano Lett., 12, 1806, 10.1021/nl203903z Xu, 2014, Nat. Commun., 5, 4554, 10.1038/ncomms5554 Heeger, 2001, Angew. Chem. Int. Ed., 40, 2591, 10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0 Snook, 2011, J. Power Sources, 196, 1, 10.1016/j.jpowsour.2010.06.084 Huang, 2016, Nano Energy, 22, 422, 10.1016/j.nanoen.2016.02.047 Gangopadhyay, 2000, Chem. Mater., 12, 608, 10.1021/cm990537f Shi, 2016, Nano Today, 11, 738, 10.1016/j.nantod.2016.10.002 Cong, 2013, Energy Environ. Sci., 6, 1185, 10.1039/c2ee24203f Chi, 2014, ACS Appl. Mater. Interfaces, 6, 16312, 10.1021/am504539k Zhao, 2013, Adv. Mater., 25, 591, 10.1002/adma.201203578 Shu, 2016, Electrochim. Acta, 212, 561, 10.1016/j.electacta.2016.07.052 Wu, 2017, J. Power Sour., 362, 184, 10.1016/j.jpowsour.2017.07.042 Cho, 2015, ACS Appl. Mater. Interfaces, 7, 10213, 10.1021/acsami.5b00657 Li, 2011, J. Mater. Chem., 21, 14706, 10.1039/c1jm11941a Liu, 2014, J. Mater. Chem. A, 2, 12068, 10.1039/C4TA01442A Kim, 2015, RSC Adv., 5, 9904, 10.1039/C4RA12980F Kumar, 2015, Mater. Today, 18, 286, 10.1016/j.mattod.2015.01.016 Loo, 2015, Electrochem. Commun., 50, 39, 10.1016/j.elecom.2014.10.018 Mayorga-Martinez, 2015, Electrochem. Commun., 56, 24, 10.1016/j.elecom.2015.03.017 Yousaf, 2016, J. Electr. Eng., 4, 58 Balasingam, 2015, Dalton Trans., 44, 15491, 10.1039/C5DT01985K Chao, 2017, Adv. Funct. Mater., 27, 10.1002/adfm.201700234 Zhang, 2016, Adv. Energy Mater., 6 Eng, 2014, ACS Nano, 8, 12185, 10.1021/nn503832j Jalili, 2016, Nanoscale, 8, 16862, 10.1039/C6NR03681C Ge, 2017, Electrochim. Acta, 235, 348, 10.1016/j.electacta.2017.03.069 Byun, 2015, ChemElectroChem, 2, 1938, 10.1002/celc.201500393 Eda, 2011, Nano Lett., 11, 5111, 10.1021/nl201874w Kappera, 2014, Nat. Mater., 13, 1128, 10.1038/nmat4080 Xiao, 2015, Appl. Phys. Lett., 107 Jeon, 2015, Nanoscale, 7, 1688, 10.1039/C4NR04532G Kumar, 2015, Nanoscale, 7, 7802, 10.1039/C4NR07080A Pu, 2012, Nano Lett., 12, 4013, 10.1021/nl301335q Wang, 2017, Chemistry, 23, 3438, 10.1002/chem.201605465 Li, 2016, Nano Energy, 21, 228, 10.1016/j.nanoen.2016.01.011 Liu, 2017, J. Mater. Sci.: Mater. Electron., 28, 8452 Javed, 2015, J. Power Sources, 285, 63, 10.1016/j.jpowsour.2015.03.079 Gao, 2016, RSC Adv., 6, 57190, 10.1039/C6RA10178J Bissett, 2015, ACS Appl. Mater. Interfaces, 7, 17388, 10.1021/acsami.5b04672 Li, 2017, J. Mater. Chem. A, 5, 3267, 10.1039/C6TA10165H Tian, 2016, Angew. Chem. Int. Ed., 55, 9191, 10.1002/anie.201603356 Su, 2016, Electrochim. Acta, 212, 941, 10.1016/j.electacta.2016.07.012 Sun, 2014, Angew. Chem., 126, 12784, 10.1002/ange.201405325 Choudhary, 2016, ACS Nano, 10, 10726, 10.1021/acsnano.6b06111 Naguib, 2014, Adv. Mater., 26, 992, 10.1002/adma.201304138 Naguib, 2012, ACS Nano, 6, 1322, 10.1021/nn204153h Anasori, 2017, Nat. Rev. Mater., 2, 16098, 10.1038/natrevmats.2016.98 Mashtalir, 2013, Nat. Commun., 4, 1716, 10.1038/ncomms2664 Kajiyama, 2016, ACS Nano, 10, 3334, 10.1021/acsnano.5b06958 Lukatskaya, 2013, Science, 341, 1502, 10.1126/science.1241488 Come, 2012, J. Electrochem. Soc., 159, A1368, 10.1149/2.003208jes Ghidiu, 2014, Nature, 516, 78, 10.1038/nature13970 Tang, 2012, J. Am. Chem. Soc., 134, 16909, 10.1021/ja308463r Murali, 2013, Nano Energy, 2, 764, 10.1016/j.nanoen.2013.01.007 Xu, 2017, J. Mater. Chem. A, 5, 17442, 10.1039/C7TA05721K Li, 2017, Adv. Energy Mater., 7 Yan, 2017, Adv. Funct. Mater., 27 Dall'Agnese, 2016, J. Power Sources, 306, 510, 10.1016/j.jpowsour.2015.12.036 Zhao, 2015, Adv. Mater., 27, 339, 10.1002/adma.201404140 Zhu, 2016, Adv. Energy Mater., 6, 10.1002/aenm.201600969 Rakhi, 2016, ACS Appl. Mater. Interfaces, 8, 18806, 10.1021/acsami.6b04481 Tian, 2017, J. Power Sources, 359, 332, 10.1016/j.jpowsour.2017.05.081 Fan, 2010, Adv. Mater., 22, 3723, 10.1002/adma.201001029 Yu, 2010, J. Phys. Chem. Lett., 1, 2165, 10.1021/jz100533t Luo, 2015, J. Mater. Chem. A, 3, 17553, 10.1039/C5TA04457J Guo, 2016, ACS Nano, 10, 10580, 10.1021/acsnano.6b06621 Kim, 2016, Adv. Energy Mater., 6 Tian, 2017, Adv. Energy Mater., 7 Zhang, 2017, Nano Energy