A hydrogel-based intravascular microgripper manipulated using magnetic fields

Sensors and Actuators A: Physical - Tập 211 - Trang 121-130 - 2014
Jui-Chang Kuo1, Hen-Wei Huang1, Shu-Wei Tung1, Yao-Joe Yang1
1Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan

Tài liệu tham khảo

Mieres, 2006, Review of the American Heart Association's guidelines for cardiovascular disease prevention in women, Heart, 92, 10, 10.1136/hrt.2005.070326 Prasad, 2007, Trends in outcomes after percutaneous coronary intervention for chronic total occlusions: a 25-year experience from the mayo clinic, J. Am. Coll. Cardiol., 49, 1611, 10.1016/j.jacc.2006.12.040 Lange, 2011, Intravascular volume therapy with colloids in cardiac surgery, J. Cardiothorac. Vasc. Anesth., 25, 847, 10.1053/j.jvca.2010.06.005 Toropygin, 2008, In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion, Curr. Eye Res., 33, 277, 10.1080/02713680701875299 Schnakenberg, 2004, Intravascular pressure monitoring system, Sens. Actuators A: Phys., 110, 61, 10.1016/j.sna.2003.04.001 Tanase, 2002, Multi-parameter sensor system with intravascular navigation for catheter/guide wire application, Sens. Actuators A: Phys., 97–98, 116, 10.1016/S0924-4247(01)00831-7 Hagiwara, 2012, Local streamline generation by mechanical oscillation in a microfluidic chip for noncontact cell manipulations, Appl. Phys. Lett., 101, 074102, 10.1063/1.4746247 Donald, 2006, An untethered, electrostatic, globally controllable MEMS micro-robot, J. Microelectromech. Syst., 15, 1, 10.1109/JMEMS.2005.863697 Fukuta, 2006, Design, fabrication, and control of MEMS-based actuator arrays for air-flow distributed micromanipulation, J. Microelectromech. Syst., 15, 912, 10.1109/JMEMS.2006.879378 Erdem, 2010, Thermally actuated omnidirectional walking microrobot, J. Microelectromech. Syst., 19, 433, 10.1109/JMEMS.2010.2041897 Hu, 2012, Hydrogel microrobots actuated by optically generated vapor bubbles, Lab Chip, 12, 3821, 10.1039/c2lc40483d Yu, 2010, Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot, Sens. Actuators A: Phys., 161, 297, 10.1016/j.sna.2010.04.037 Sakar, 2011, Modeling, control and experimental characterization of microbiorobots, Int. J. Robot Res., 30, 647, 10.1177/0278364910394227 Pawashe, 2009, Modeling and experimental characterization of an untethered magnetic micro-robot, Int. J. Robot Res., 28, 1077, 10.1177/0278364909341413 Kim, 2011, Programming magnetic anisotropy in polymeric microactuators, Nat. Mater., 10, 747, 10.1038/nmat3090 Jeong, 2010, Novel electromagnetic actuation (EMA) method for 3-dimensional locomotion of intravascular microrobot, Sens. Actuators A: Phys., 157, 118, 10.1016/j.sna.2009.11.011 Choi, 2010, EMA system with gradient and uniform saddle coils for 3D locomotion of microrobot, Sens. Actuators A: Phys., 163, 410, 10.1016/j.sna.2010.08.014 Jeon, 2012, Magnetic navigation system for the precise helical and translational motions of a microrobot in human blood vessels, J. Appl. Phys., 111, 07E702, 10.1063/1.3671411 Kosa, 2012, MRI driven magnetic microswimmers, Biomed. Microdevices, 14, 165, 10.1007/s10544-011-9594-7 Frutiger, 2010, Small, fast, and under control: wireless resonant magnetic micro-agents, Int. J. Robot Res., 29, 613, 10.1177/0278364909353351 Leong, 2009, Tetherless thermobiochemically actuated microgrippers, Proc. Natl. Acad. Sci. U. S. A., 106, 703, 10.1073/pnas.0807698106 Jiang, 2010, Development of rolling magnetic microrobots, J. Micromech. Microeng., 20, 1, 10.1088/0960-1317/20/8/085042 Tottori, 2012, Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport, Adv. Mater., 24, 811, 10.1002/adma.201103818 Kim, 2010, Single exposure fabrication and manipulation of 3D hydrogel cell microcarriers, Lab Chip, 11, 48, 10.1039/C0LC00369G Bergeles, 2012, Visually servoing magnetic intraocular microdevices, IEEE Trans. Robot., 28, 798, 10.1109/TRO.2012.2188165 Kim, 2012, Designing responsive buckled surfaces by halftone gel lithography, Science, 335, 1201, 10.1126/science.1215309 Satarkar, 2009, Magnetic hydrogel nanocomposites as remote controlled microfluidic valves, Lab Chip, 9, 1773, 10.1039/b822694f Zhang, 2011, Optically- and thermally-responsive programmable materials based on carbon nanotube–hydrogel polymer composites, Nano Lett., 11, 3239, 10.1021/nl201503e Joseph, 2008, Why are carbon nanotube fast transporters of water, Nano Lett., 8, 452, 10.1021/nl072385q Kuo, 2013, A passive inertial switch using MWCNT-hydrogel composite with interrogation capability, J. Microelectromech. Syst., 22, 1057, 10.1109/JMEMS.2012.2237385 Shim, 2012, Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers, Angew. Chem. Int. Ed., 51, 1420, 10.1002/anie.201106723 Zarzar, 2011, Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH, Adv. Mater., 23, 1442, 10.1002/adma.201004231 Kuo, 2013, A hydrogel-based intravascular microgripper manipulated using magnetic fields, 1683 Hayt, 2006 Munson, 2006 Sherman, 1990 Yesin, 2006, Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic field, Int. J. Robot Res., 25, 527, 10.1177/0278364906065389