A hydrogel-based intravascular microgripper manipulated using magnetic fields
Tài liệu tham khảo
Mieres, 2006, Review of the American Heart Association's guidelines for cardiovascular disease prevention in women, Heart, 92, 10, 10.1136/hrt.2005.070326
Prasad, 2007, Trends in outcomes after percutaneous coronary intervention for chronic total occlusions: a 25-year experience from the mayo clinic, J. Am. Coll. Cardiol., 49, 1611, 10.1016/j.jacc.2006.12.040
Lange, 2011, Intravascular volume therapy with colloids in cardiac surgery, J. Cardiothorac. Vasc. Anesth., 25, 847, 10.1053/j.jvca.2010.06.005
Toropygin, 2008, In vitro noncontact intravascular femtosecond laser surgery in models of branch retinal vein occlusion, Curr. Eye Res., 33, 277, 10.1080/02713680701875299
Schnakenberg, 2004, Intravascular pressure monitoring system, Sens. Actuators A: Phys., 110, 61, 10.1016/j.sna.2003.04.001
Tanase, 2002, Multi-parameter sensor system with intravascular navigation for catheter/guide wire application, Sens. Actuators A: Phys., 97–98, 116, 10.1016/S0924-4247(01)00831-7
Hagiwara, 2012, Local streamline generation by mechanical oscillation in a microfluidic chip for noncontact cell manipulations, Appl. Phys. Lett., 101, 074102, 10.1063/1.4746247
Donald, 2006, An untethered, electrostatic, globally controllable MEMS micro-robot, J. Microelectromech. Syst., 15, 1, 10.1109/JMEMS.2005.863697
Fukuta, 2006, Design, fabrication, and control of MEMS-based actuator arrays for air-flow distributed micromanipulation, J. Microelectromech. Syst., 15, 912, 10.1109/JMEMS.2006.879378
Erdem, 2010, Thermally actuated omnidirectional walking microrobot, J. Microelectromech. Syst., 19, 433, 10.1109/JMEMS.2010.2041897
Hu, 2012, Hydrogel microrobots actuated by optically generated vapor bubbles, Lab Chip, 12, 3821, 10.1039/c2lc40483d
Yu, 2010, Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot, Sens. Actuators A: Phys., 161, 297, 10.1016/j.sna.2010.04.037
Sakar, 2011, Modeling, control and experimental characterization of microbiorobots, Int. J. Robot Res., 30, 647, 10.1177/0278364910394227
Pawashe, 2009, Modeling and experimental characterization of an untethered magnetic micro-robot, Int. J. Robot Res., 28, 1077, 10.1177/0278364909341413
Kim, 2011, Programming magnetic anisotropy in polymeric microactuators, Nat. Mater., 10, 747, 10.1038/nmat3090
Jeong, 2010, Novel electromagnetic actuation (EMA) method for 3-dimensional locomotion of intravascular microrobot, Sens. Actuators A: Phys., 157, 118, 10.1016/j.sna.2009.11.011
Choi, 2010, EMA system with gradient and uniform saddle coils for 3D locomotion of microrobot, Sens. Actuators A: Phys., 163, 410, 10.1016/j.sna.2010.08.014
Jeon, 2012, Magnetic navigation system for the precise helical and translational motions of a microrobot in human blood vessels, J. Appl. Phys., 111, 07E702, 10.1063/1.3671411
Kosa, 2012, MRI driven magnetic microswimmers, Biomed. Microdevices, 14, 165, 10.1007/s10544-011-9594-7
Frutiger, 2010, Small, fast, and under control: wireless resonant magnetic micro-agents, Int. J. Robot Res., 29, 613, 10.1177/0278364909353351
Leong, 2009, Tetherless thermobiochemically actuated microgrippers, Proc. Natl. Acad. Sci. U. S. A., 106, 703, 10.1073/pnas.0807698106
Jiang, 2010, Development of rolling magnetic microrobots, J. Micromech. Microeng., 20, 1, 10.1088/0960-1317/20/8/085042
Tottori, 2012, Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport, Adv. Mater., 24, 811, 10.1002/adma.201103818
Kim, 2010, Single exposure fabrication and manipulation of 3D hydrogel cell microcarriers, Lab Chip, 11, 48, 10.1039/C0LC00369G
Bergeles, 2012, Visually servoing magnetic intraocular microdevices, IEEE Trans. Robot., 28, 798, 10.1109/TRO.2012.2188165
Kim, 2012, Designing responsive buckled surfaces by halftone gel lithography, Science, 335, 1201, 10.1126/science.1215309
Satarkar, 2009, Magnetic hydrogel nanocomposites as remote controlled microfluidic valves, Lab Chip, 9, 1773, 10.1039/b822694f
Zhang, 2011, Optically- and thermally-responsive programmable materials based on carbon nanotube–hydrogel polymer composites, Nano Lett., 11, 3239, 10.1021/nl201503e
Joseph, 2008, Why are carbon nanotube fast transporters of water, Nano Lett., 8, 452, 10.1021/nl072385q
Kuo, 2013, A passive inertial switch using MWCNT-hydrogel composite with interrogation capability, J. Microelectromech. Syst., 22, 1057, 10.1109/JMEMS.2012.2237385
Shim, 2012, Controlled origami folding of hydrogel bilayers with sustained reversibility for robust microcarriers, Angew. Chem. Int. Ed., 51, 1420, 10.1002/anie.201106723
Zarzar, 2011, Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH, Adv. Mater., 23, 1442, 10.1002/adma.201004231
Kuo, 2013, A hydrogel-based intravascular microgripper manipulated using magnetic fields, 1683
Hayt, 2006
Munson, 2006
Sherman, 1990
Yesin, 2006, Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic field, Int. J. Robot Res., 25, 527, 10.1177/0278364906065389