SnTe@MnO2‐SP Nanosheet–Based Intelligent Nanoplatform for Second Near‐Infrared Light–Mediated Cancer Theranostics

Advanced Functional Materials - Tập 29 Số 37 - 2019
Hanjie Zhang1, Weiwei Zeng1, Chao Pan1, Liwen Feng1, Meitong Ou1, Xiaowei Zeng1, Xin Liang1, Meiying Wu1, Xiaoyuan Ji1, Lin Mei1
1School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China

Tóm tắt

Abstract

Near infrared light, especially the second near‐infrared light (NIR II) biowindows with deep penetration and high sensitivity are widely used for optical diagnosis and phototherapy. Here, a novel kind of 2D SnTe@MnO2‐SP nanosheet (NS)‐based nanoplatform is developed for cancer theranostics with NIR II‐mediated precise optical imaging and effective photothermal ablation of mouse xenografted tumors. The 2D SnTe@MnO2‐SP NSs are fabricated via a facile method combining ball‐milling and liquid exfoliation for synthesis of SnTe NSs, and surface coating MnO2 shell and soybean phospholipid (SP). The ultrathin SnTe@MnO2‐SP NSs reveal notably high photothermal conversion efficiency (38.2% in NIR I and 43.9% in NIR II). The SnTe@MnO2‐SP NSs inherently feature tumor microenvironment (TME)‐responsive biodegradability, and the main metabolite TeO32− shows great antitumor effect, coupling synergetic chemotherapy for cancer. Moreover, the SnTe@MnO2‐SP NSs also exhibit great potential for fluorescence, photoacoustic (PA), and photothermal imaging agents in the NIR II biowindow with much higher resolution and sensitivity. This is the first report, as far as is known, with such an inorganic nanoagent setting fluorescence/PA/photothermal imaging and photothermal therapy in NIR II biowindow and TME‐responsive biodegradability rolled into one, which provide insight into the clinical potential for cancer theranostics.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201605021

10.1016/j.addr.2016.05.022

10.1021/acs.chemrev.7b00258

10.1016/j.nantod.2018.02.010

10.1039/C7CS00522A

10.1002/anie.201803321

10.1021/jacs.7b07818

10.1002/adma.201803031

10.1002/adfm.201703261

10.1002/anie.201703657

10.1002/adma.201802061

10.1021/ja508641z

10.1038/nnano.2009.326

10.1038/nm.2995

10.1038/nmat4476

10.1039/C7CS00612H

10.1002/adma.201706356

10.1021/jacs.7b11036

10.1002/anie.201710727

10.1002/adma.201801778

10.1002/anie.201801226

10.1002/adma.201705913

10.1021/acsami.8b01458

10.1021/acsnano.7b08725

10.1021/ja508641z

10.1002/adma.201400703

10.1021/acs.chemrev.6b00073

10.1002/adma.201802591

10.1021/acs.chemrev.7b00689

10.1021/acsenergylett.7b01169

10.1002/adma.201700176

10.1039/C7CS00886D

10.1126/science.aad8609

10.1021/ja074481z

10.1016/j.nanoen.2018.02.045

10.1073/pnas.1305735110

10.1021/acsnano.8b02261

10.1021/cm504112m

10.1021/jacs.5b00837

10.1021/jacs.5b07284

10.1021/nn405773r

10.1021/ja2100774

10.1002/ange.200604775

10.1002/anie.200906689

10.1039/C6SC01320A

10.1016/j.biomaterials.2017.11.015

10.1038/nmat2398

10.1021/ja401612x

10.1021/cr400532z

10.1039/C5NR00297D

10.1038/s41467-017-01050-0

10.1016/0006-2952(81)90578-5

10.1016/0005-2736(92)90192-O