A Facet‐Dependent Schottky‐Junction Electron Shuttle in a BiVO4{010}–Au–Cu2O Z‐Scheme Photocatalyst for Efficient Charge Separation

Advanced Functional Materials - Tập 28 Số 31 - 2018
Chenguang Zhou1, Shaomang Wang1, Zong‐Yan Zhao2, Zhan Shi1, Shicheng Yan1, Zhigang Zou3,4
1Eco-materials and Renewable Energy Research Center (ERERC) Collaborative Innovation Center of Advanced Microstructures College of Engineering and Applied Sciences Nanjing University No. 22, Hankou Road Nanjing Jiangsu 210093 P. R. China
2Faculty of Materials Science and Engineering Kunming University of Science and Technology No. 61 Wenchang Road Kunming Yunnan 650093 P. R. China
3Jiangsu Key Laboratory for Nano Technology National Laboratory of Solid State Microstructures Department of Physics Nanjing University No. 22, Hankou Road Nanjing Jiangsu 210093 P. R. China
4Macau Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, P. R. China

Tóm tắt

AbstractInterfacial charge separation and transfer are the main challenges of efficient semiconductor‐based Z‐scheme photocatalytic systems. Here, it is discovered that a Schottky junction at the interface between the BiVO4 {010} facet and Au is an efficient electron‐transfer route useful for constructing a high‐performance BiVO4{010}–Au–Cu2O Z‐scheme photocatalyst. Spectroscopic and computational studies reveal that hot electrons in BiVO4 {010} more easily cross the Schottky barrier to expedite the migration from BiVO4 {010} to Au and are subsequently captured by the excited holes in Cu2O. This crystal‐facet‐dependent electron shuttle allows the long‐lived holes and electrons to stay in the valence band of BiVO4 and conduction band of Cu2O, respectively, contributing to improved light‐driven CO2 reduction. This unique semiconductor crystal‐facet sandwich structure will provide an innovative strategy for rational design of advanced Z‐scheme photocatalysts.

Từ khóa


Tài liệu tham khảo

10.1021/cr1002326

10.1021/acs.chemrev.5b00370

10.1002/adma.201400288

10.1002/adfm.201401636

10.1021/acs.nanolett.6b02094

10.1021/ja203296z

10.1038/nmat1734

10.1038/nmat4589

10.1021/jacs.6b12164

10.1039/C4EE03271C

10.1039/C4CY01545B

10.1002/anie.201310635

10.1038/ncomms4825

10.1038/ncomms2401

10.1002/anie.201504135

10.1039/C6EE00526H

10.1021/jacs.5b05926

10.1021/ja5044787

10.1021/jacs.5b12521

10.1038/nmat4451

10.1021/acs.jpclett.6b00428

10.1021/ja9065333

10.1021/jacs.6b10288

10.1016/j.mseb.2013.11.001

10.1039/C6CY01980C

10.1016/j.pmatsci.2013.09.003

10.1021/acsami.5b00822

10.1016/j.jhazmat.2010.12.046

10.1016/S1388-2481(00)00006-0

10.1021/es051148r

10.1016/S1381-1169(99)00351-9

Bard A. J., 1985, Standard Potentials in Aqueous Solution

10.1021/acscatal.6b00234

10.1021/ja410230u

10.1063/1.2966140

10.1016/j.jpcs.2016.12.029

10.1115/1.4001172

10.1524/zkri.220.5.567.65075

10.1103/PhysRevLett.100.136406