Miscible Displacements of Reactive and Anisotropic Dispersive Flows in Porous Media

Transport in Porous Media - Tập 77 - Trang 489-506 - 2008
K. Ghesmat1, J. Azaiez1
1Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada

Tóm tắt

The viscous fingering instability of miscible reactive–dispersive flows in a homogeneous porous media is investigated through nonlinear numerical simulations. In particular, the role of velocity-dependent transverse and longitudinal dispersions as well as the type and rate of auto-catalytic chemical reactions is analyzed. It is found that for a third-order auto-catalytic reaction, the higher the reaction rate, the more complex the finger structures. Furthermore, major differences between the flow development of third-order and second-order autocatalytic reactions are reported. In addition, the anisotropy and velocity dependence of the dispersion tensor are found to have a more profound effect on the fingering instability in the case of reactive flows than in the non-reactive ones. The qualitative characterization of the finger structures is explained by examining the flow velocity field and further quantified through an analysis of the average concentration and relative contact area.

Tài liệu tham khảo

Alvarado V., Scriven L.E., Davis H.T.: Stochastic-perturbation analysis of a one-dimensional dispersion-reaction equation: effects of spatially-varying reaction rates. Transp. Porous Media 32, 139–161 (1998) doi:10.1023/A:1006575527731 Azaiez J., Singh B.: Stability of miscible displacements of shear-thinning fluids in a Hele-Shaw cell. Phys. Fluids 14, 1557–1571 (2002) doi:10.1063/1.1462030 Bansagi T. Jr., Horvath D., Toth A., Yang J., Kalliadasis S., De Wit A.: Density fingering of an exothermic autocatalytic reaction. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, 55301–55314 (2003) doi:10.1103/PhysRevE.68.055301 Bansagi T., Horvath D., Toth A.: Multi-component convection in the chlorite–tetrathionate reaction. Chem. Phys. Lett. 384, 153–156 (2004) doi:10.1016/j.cplett.2003.12.018 Bear J.: Dynamics of Fluids in Porous Media. Dover, New York (1972) Bear J., Bachmat Y.: Introduction to Modelling of Transport Phenomena in Porous Media. Kluwer, Dordrecht (1990) Ben-Jacob E., Garik P.: The formation of patterns in non-equilibrium growth. Nature 343, 523–530 (1990) doi:10.1038/343523a0 Bockmann M., Muller S.C.: Growth rates of the buoyancy-driven instability of an autocatalytic reaction front in a narrow cell. Phys. Rev. Lett. 85, 2506–2509 (2000) doi:10.1103/PhysRevLett.85.2506 Brenner E., Levine H., Tu Y.: Non-symmetric Saffman-Taylor fingers. Phys. Fluids A. 3, 529–534 (1991) doi:10.1063/1.858114 Carey M.R., Morris S.W., Kolodner P.: Convective fingering of an autocatalytic reaction front. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53, 6012–6015 (1996) doi:10.1103/PhysRevE.53.6012 Chuoke R.L., van Meurs P., Vander Poel C.: The instability of slow, immiscible, viscous liquid–liquid displacements in permeable media. Trans. AIME 216, 188–194 (1959) Coroian D.I., Vasquez D.A.: The effect of the order of autocatalysis for reaction fronts in vertical slabs. J. Chem. Phys. 119, 3354–3359 (2003) D’Hernoncourt J., Kalliadasis S., De Wit A.: Fingering of exothermic reaction-diffusion fronts in Hele-Shaw cells with conducting walls. J. Chem. Phys. 123, 234503-1-9 (2005) D’Hernoncourt J., De Wit A., Merkin J.H.: Effects of a constant electric field on the diffusional instability of cubic autocatalytic reaction fronts. J. Chem. Phys. 126, 104504 (2007) De D., Hrymak A.N., Pelton H.: A network of zones model for reactive polymer enhanced miscible displacement in a porous cylinder. Chem. Eng. Sci. 53, 3445–3559 (1998) doi:10.1016/S0009-2509(98)00162-6 De Wit A., Homsy G.M.: Nonlinear interactions of chemical reactions and viscous fingering in porous media. Phys. Fluids 11, 949–51 (1999) De Wit A., Homsy G.M.: Viscous fingering in reaction-diffusion systems. J. Chem. Phys. 110, 8663–8675 (1999) doi:10.1063/1.478774 De Wit A.: Fingering of chemical fronts in porous media. Phys. Rev. Lett. 87, 054502/1–4 (2001) Demuth R., Meiburg E.: Chemical fronts in Hele-Shaw cells: linear stability analysis based on the three-dimensional stokes equations. Phys. Fluids 15, 597–602 (2003) doi:10.1063/1.1536972 Ghesmat K., Azaiez J.: Viscous fingering instability in porous media: effect of anisotropic velocity-dependent dispersion tensor. Transp. Porous Media 73, 297–318 (2008) doi:10.1007/s11242-007-9171-y Hill S.: Channeling in packed columns. Chem. Eng. Sci. 1, 247–253 (1952) doi:10.1016/0009-2509(52)87017-4 Homsy G.M.: Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271–311 (1987) doi:10.1146/annurev.fl.19.010187.001415 Horvath D., Bansagi T., Toth A.: Orientation-dependent density fingering in an acidity front. J. Chem. Phys. 117, 4399–4402 (2002) doi:10.1063/1.1497163 Huang J., Edwards B.F.: Pattern formation and evolution near autocatalytic reaction fronts in a narrow vertical slab. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54, 2620–2627 (1996) doi:10.1103/PhysRevE.54.2620 Islam M.N., Azaiez J.: Fully implicit finite difference pseudo-spectral method for simulating high mobility-ratio miscible displacements. Int. J. Numer. Methods Fluids 47, 161–183 (2005) doi:10.1002/fld.803 Kechagia P.E., Tsimpanogiannis I.N., Yortsos Y.C., Lichtner P.C.: On the upscaling of reaction-transport processes in porous media with fast or finite kinetics. Chem. Eng. Sci. 57, 2565–2577 (2002) doi:10.1016/S0009-2509(02)00124-0 Manickam O., Homsy G.M.: Simulation of viscous fingering in miscible displacements with non-monotonic viscosity profiles. Phys. Fluids 6, 95–107 (1994) doi:10.1063/1.868049 Manickam O., Homsy G.M.: Fingering instabilities in vertical miscible displacement flows in porous media. J. Fluid Mech. 288, 75–102 (1995) doi:10.1017/S0022112095001078 McCloud K.V., Maher J.V.: Experimental perturbations to Saffman-Taylor flow. Phys. Rep. 260, 139–185 (1995) doi:10.1016/0370-1573(95)91133-U Nagatsu Y., Ueda T.: Effects of reactant concentrations on reactive miscible viscous fingering. Fluid. Mech. Trans. Phen. 47, 1711–1720 (2001) Nittmann J., Stanley H.E.: Tip splitting without interfacial tension and dendritic growth patterns arising from molecular anisotropy. Nature 321, 663–668 (1986) doi:10.1038/321663a0 Ortoleva P.J.: Geochemical Self-organization. Oxford University Press, Oxford (1994) Park C.W., Homsy G.M.: The instability of long fingers in Hele-Shaw flows. Phys. Fluids 28, 1583–1585 (1985) doi:10.1063/1.864947 Peaceman D.W., Rachford H. Jr.: Numerical calculation multidimensional miscible displacement. Soc. Pet. Eng. J. 2, 327–339 (1962) doi:10.2118/471-PA Rica T., Horvath D., Toth A.: Density fingering in acidity fronts: effect of viscosity. Chem. Phys. Lett. 408, 422–425 (2005) doi:10.1016/j.cplett.2005.04.083 Ruith M., Meiburg E.: Miscible rectilinear displacements with gravity override, Part 1, Homogeneous porous medium. J. Fluid Mech. 420, 225–257 (2000) doi:10.1017/S0022112000001543 Saffman P.G., Taylor G.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A Math. Phys. Sci. 245, 312–329 (1958) doi:10.1098/rspa.1958.0085 Singh B., Azaiez J.: Numerical simulation of viscous fingering of Shear-Thinning Fluids. Can. J. Chem. Eng. 79, 961–967 (2001) Slobod R.L., Caudle B.H.: X-Ray shadowgraph studies of areal sweep-out efficiencies. Trans. AIME 195, 265–269 (1952) Tan C.T., Homsy G.M.: Viscous fingering with permeability heterogeneity. Phys. Fluids A 4, 1099–1101 (1992) doi:10.1063/1.858227 Vasquez D.A., Wilder J.W., Edwards B.F.: Chemical wave propagation in Hele-Shaw cells and porous media. J. Chem. Phys. 104, 9926–9931 (1996) doi:10.1063/1.471720 Vasquez D.A., Wit D.: A. Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells. J. Chem. Phys. 121, 935–941 (2004) doi:10.1063/1.1760515 Yang J., D’Onofrio A., Kalliadasis S., De Wit A.: Rayleigh-Taylor instability of reaction-diffusion acidity fronts. J. Chem. Phys. 117, 9395–9408 (2002) doi:10.1063/1.1516595 Yortsos Y.C., Zeybek M.: Dispersion driven instability in miscible displacement in porous media. Phys. Fluids 31, 3511–3518 (1988) doi:10.1063/1.866918 Zadrazil A., Sevcikova H.: Influence of an electric field on the buoyancy-driven instabilities. J. Chem. Phys. 123, 174509-1-8 (2005) Zadrazil A., Kiss I.Z., D’Hernoncourt J., Sevcikova H., Merkin J.H., De Wit A.: Effects of constant electric fields on the buoyant stability of reaction fronts Phys. Rev. E 71, 26224-1-11 (2005) Zhao H., Casademunt J., Yeung C., Maher J.V.: Perturbing Hele-Shaw flow with a small gap gradient. Phys. Rev. A 45, 2455–2460 (1992) doi:10.1103/PhysRevA.45.2455