Effects of Electrolyte Composition on Heat Exchange in Anode Plasma Electrolyte Treatment of Commercial Titanium

Surface Engineering and Applied Electrochemistry - Tập 54 - Trang 136-141 - 2018
A. V. Zhirov1, S. Yu. Shadrin1, P. N. Belkin1
1Kostroma State University, Kostroma, Russia

Tóm tắt

The study considers heat exchange in a three-phase system: electrolyte solution—vapour-gas envelope (VGE)—a titanium workpiece. The temperature of a workpiece, current intensity, heat fluxes from the envelope to the electrolyte and the workpiece were measured in an aqueous solution of ammonium chloride with addition of ammonia and glycerol. Addition of ammonia and glycerol proved to decrease current intensity, heating temperature, total energy liberation and heat fluxes to the solution and the sample. Furthermore, it was found that heat shares passing to the electrolyte and the workpiece are not affected by ammonia and glycerol concentrations. The addition of ammonia and glycerol affect heat exchange, increasing the VGE thickness due to intense evaporation of these elements.

Tài liệu tham khảo

Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., et al., Surf. Coat. Technol., 1999, vol. 122, pp. 73–93. Yasnogorodckii, I.Z., Autom. Tract. Ind., 1954, vol. 6, pp. 21–24. Belkin, P.N., Yerokhin, A.L., and Kusmanov, S.A., Surf. Coat. Technol., 2016, vol. 307, pp. 1194–1218. Yasnogorodckii, I.Z., Elektrokhimicheskaya i elektromekhanicheskaya obrabotka metallov (Electrochemical and Electromechanical Processing of Metals), Leningrad: Mashinostroenie, 1971, pp. 117–168. Duradzhi, V.N., Elektron. Obrab. Mater., 1975, no. 5, pp. 44–47. Belikhov, A.B. and Belkin, P.N., Elektron. Obrab. Mater., 1998, nos. 5–6, pp. 23–31. Luk, S.F., Leung, T.P., Miu, W.S. and Pashby, I., J. Mater. Process. Technol., 1999, vol. 91, pp. 245–249. Altagoury, Z., Abdu, M.T., Adly, M.A., and Elhabak, A., Int. J. Adv. Eng., Technol. Comp. Sci., 2014, vol. 1, no. 1, pp. 20–27. Ayday, A. and Durman, M., Acta Phys. Pol., 2013, vol. 123, no. 2, pp. 291–293. Tyurin, Yu.N. and Pogrebnjak, A.D., Surf. Coat. Technol., 2001, vols. 142–144, pp. 293–299. Wu, J., Liu, R., Xue, W., Wang, B., et al., Appl. Surf. Sci., 2014, vol. 316, pp. 102–107. Ganchar, V.I. and Dmitriev, E.G., Elektron. Obrab. Mater., 1989, no. 2, pp. 23–25. Shadrin, S.Yu. and Belkin, P.N., Int. J. Heat Mass Transfer., 2012, vol. 55, pp. 179–186. Shadrin, S.Yu., Zhirov, A.V., and Belkin, P.N., Int. J. Heat Mass Transfer, 2017, vol. 107, pp. 1104–1109. Sarafanov, I.S., Anagorskii, L.A., and Rabkin, M.A., Novoe v elektrofizicheskoi i elektrokhimicheskoi obrabotke materialov (Advanced Electrophysical and Electrochemical Processing of Materials), Leningrad: Mashinostroenie, 1972, pp. 106–110. Rössner, E., Marx, G., Wicht, H., Suchotin, A., et al., DDR Patent 0152144, 1981. Resner, E., Marks, G., Zaitsev, V.A., and Sukhotin, A.M., Elektron. Obrab. Mater., 1983, no. 3, pp. 59–61. Komarov, A.O. and Belkin, P.N., Powder Metall. Funct. Coat., 2008, vol. 2, pp. 46–49. Zhirov, A.V., Smirnova, T.S., and Shadrin, S.Yu., Vestn. Kostromsk. Gos. Univ. im. N.A. Nekrasova, 2012, no. 5, pp. 22–25. Kusmanov, S.A., Shadrin, S.Yu., and Belkin, P.N., Surf. Coat. Technol., 2014, vol. 258, pp. 727–733. Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Moscow: Nauka, 1987. Putintsev, N.M., Stepanova, N.V., Putintsev, D.N., and Zinov’eva, A.B., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 4, pp. 703–704. Kusmanov, S.A., D’yakov, I.G., and Belkin, P.N., Vopr. Materialoved., 2009, no. 4, pp. 7–14.