Globins and hypoxia adaptation in the goldfish, Carassius auratus

FEBS Journal - Tập 275 Số 14 - Trang 3633-3643 - 2008
Anja Roesner1, Stephanie Mitz2,1, Thomas Hankeln3, Thorsten Burmester2
1Institute of Zoology, University of Mainz, Germany
2Institute of Zoology, University of Hamburg, Germany
3Institute of Molecular Genetics, University of Mainz, Germany

Tóm tắt

Goldfish (Carassius auratus) may survive in aquatic environments with low oxygen partial pressures. We investigated the contribution of respiratory proteins to hypoxia tolerance in C. auratus. We determined the complete coding sequence of hemoglobin α and β and myoglobin, as well as partial cDNAs from neuroglobin and cytoglobin. Like the common carp (Cyprinus carpio), C. auratus possesses two paralogous myoglobin genes that duplicated within the cyprinid lineage. Myoglobin is also expressed in nonmuscle tissues. By means of quantitative real‐time RT‐PCR, we determined the changes in mRNA levels of hemoglobin, myoglobin, neuroglobin and cytoglobin in goldfish exposed to prolonged hypoxia (48 h at Po2 ∼ 6.7 kPa, 8 h at Po2 ∼ 1.7 kPa, 16 h at Po2 ∼ 6.7 kPa) at 20 °C. We observed small variations in the mRNA levels of hemoglobin, neuroglobin and cytoglobin, as well as putative hypoxia‐responsive genes like lactate dehydrogenase or superoxide dismutase. Hypoxia significantly enhanced only the expression of myoglobin. However, we observed about fivefold higher neuroglobin protein levels in goldfish brain compared with zebrafish, although there was no significant difference in intrinsic myoglobin levels. These observations suggest that both myoglobin and neuroglobin may contribute to the tolerance of goldfish to low oxygen levels, but may reflect divergent adaptive strategies of hypoxia preadaptation (neuroglobin) and hypoxia response (myoglobin).

Từ khóa


Tài liệu tham khảo

van den Thillart G, 1985, Teleosts in hypoxia: aspects of anaerobic metabolism, Mol Physiol, 8, 393

10.1242/jeb.200.2.411

10.1016/j.resp.2004.03.013

10.1016/S1095-6433(02)00132-0

10.1152/ajpregu.00626.2004

10.1242/jeb.00979

10.1038/nrg1590

10.1016/j.cbpa.2006.09.001

10.1152/ajpregu.00089.2005

10.1016/j.resp.2006.02.006

10.1126/science.7384807

Shoubridge EA, 1983, The integration and control of metabolism in the anoxic goldfish, Mol Physiol, 4, 165

10.1242/jeb.142.1.325

10.1152/ajpregu.2001.280.1.R100

10.1242/jeb.00977

10.1126/science.1135471

10.1016/S0025-326X(02)00061-9

10.1073/pnas.98.4.1993

10.1152/physiolgenomics.00128.2002

10.1073/pnas.131213198

10.1007/978-0-387-75434-5_13

10.1016/S0034-5687(01)00309-7

10.1242/jeb.02243

10.1242/jeb.00243

10.1073/pnas.0508270103

10.1038/35035093

10.1074/jbc.M209909200

10.1016/S0306-4522(02)00536-5

10.1152/nips.01513.2003

10.1016/j.jinorgbio.2004.11.009

10.1093/embo-reports/kvf248

10.1093/oxfordjournals.molbev.a004096

10.1074/jbc.M310540200

10.1016/j.bbrc.2005.08.271

10.1159/000089884

10.1093/molbev/msh258

Nilsson GE, 2001, Surviving anoxia with the brain turned on, News Physiol Sci, 16, 217

10.1016/0003-2697(79)90687-0

10.1074/jbc.273.36.23426

10.1093/molbev/msg173

10.1086/421754

10.1016/S1095-6433(97)00458-3

10.1016/S1532-0456(02)00127-8

10.1086/physzool.55.4.30155860

10.1016/0304-4165(77)90319-1

10.1007/BF00571378

10.1242/jeb.205.5.677

10.1146/annurev.physiol.69.031905.163111

10.1074/jbc.M501338200

10.1073/pnas.251466698

10.1073/pnas.0408766102

10.1074/jbc.M313732200

10.1016/j.febslet.2006.08.003

10.1074/jbc.M305519200

10.1242/jeb.204.18.3133

10.1007/978-1-4757-3401-0_7

10.1242/jeb.00594

10.1016/0003-2697(76)90527-3