Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing
Tài liệu tham khảo
Lewandowski, 2016, Metal additive manufacturing: a review of mechanical properties, Annu. Rev. Mater. Res., 46, 151, 10.1146/annurev-matsci-070115-032024
Frazier, 2014, Metal additive manufacturing: a review, J. Mater. Eng. Perform., 23, 1917, 10.1007/s11665-014-0958-z
Yan, 2014, Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting, J. Mater., 55, 533, 10.1016/j.matdes.2013.10.027
Ding, 2015, Wire-feed additive manufacturing of metal components: technologies, developments and future interests, Int. J. Adv. Manuf. Technol., 81, 465, 10.1007/s00170-015-7077-3
Williams, 2016, Wire+ arc additive manufacturing, Mater. Sci. Technol., 32, 641, 10.1179/1743284715Y.0000000073
Wang, 2013, Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V, Metall. Mater. Trans. A, 44, 968, 10.1007/s11661-012-1444-6
Lin, 2016, Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing, Mater. Des., 102, 30, 10.1016/j.matdes.2016.04.018
Ding, 2015, A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM), Robot. Comput. Integr. Manuf., 31, 101, 10.1016/j.rcim.2014.08.008
Ding, 2016, Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing, Robot. Comput. Integr. Manuf., 39, 32, 10.1016/j.rcim.2015.12.004
Xiong, 2014, Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis, J. Intell. Manuf., 25, 157, 10.1007/s10845-012-0682-1
Wu, 2017, Effect of molten pool size on microstructure and tensile properties of wire arc additive manufacturing of Ti-6Al-4V alloy, Materials, 10, 749, 10.3390/ma10070749
Bermingham, 2015, ScienceDirect Controlling the microstructure and properties of wire arc additive manufactured Ti – 6Al – 4V with trace boron additions, Acta Mater., 91, 289, 10.1016/j.actamat.2015.03.035
Yilmaz, 2017, Microstructure characterization of SS308LSi components manufactured by GTAW-based additive manufacturing: shaped metal deposition using pulsed current arc, Int. J. Adv. Manuf. Technol., 89, 13, 10.1007/s00170-016-9053-y
Zhou, 2016, Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing, Int. J. Heat Mass Transf., 103, 521, 10.1016/j.ijheatmasstransfer.2016.06.084
Tanaka, 2002, A unified numerical modeling of stationary tungsten-inert-gas welding process, Metall. Mater. Trans. A., 33, 2043, 10.1007/s11661-002-0036-2
Murphy, 2009, Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour, J. Phys. D: Appl. Phys., 42, 194006, 10.1088/0022-3727/42/19/194006
Traidia, 2011, Numerical and experimental study of arc and weld pool behaviour for pulsed current GTA welding, Int. J. Heat Mass Transf., 54, 2163, 10.1016/j.ijheatmasstransfer.2010.12.005
Wang, 2014, A unified model of coupled arc plasma and weld pool for double electrodes TIG welding, J. Phys. D: Appl. Phys., 47, 202, 10.1088/0022-3727/47/27/275202
Hu, 2007, Heat and mass transfer in gas metal arc welding. Part I: The arc, Int. J. Heat Mass Transf., 50, 833, 10.1016/j.ijheatmasstransfer.2006.08.025
Hu, 2007, Heat and mass transfer in gas metal arc welding. Part II: the metal, Int. J. Heat Mass Transf., 50, 808, 10.1016/j.ijheatmasstransfer.2006.08.026
Wu, 2007, Numerical analysis of both front- and back-side deformation of fully-penetrated GTAW weld pool surfaces, Comput. Mater. Sci., 39, 635, 10.1016/j.commatsci.2006.08.018
Pan, 2016, Investigation of molten pool behavior and weld bead formation in VP-GTAW by numerical modelling, Mater. Des., 111, 600, 10.1016/j.matdes.2016.09.022
Chen, 2011, Predicting the influence of groove angle on heat transfer and fluid flow for new gas metal arc welding processes, Int. J. Heat Mass Transf., 55, 102, 10.1016/j.ijheatmasstransfer.2011.08.046
Cho, 2007, Understanding bead hump formation in gas metal arc welding using a numerical simulation, Metall. Mater. Trans. B, 38, 305, 10.1007/s11663-007-9034-5
Hu, 2008, Weld pool dynamics and the formation of ripples in 3D gas metal arc welding, Int. J. Heat Mass Transf., 51, 2537, 10.1016/j.ijheatmasstransfer.2007.07.042
Liu, 2015, Numerical investigation of weld pool behaviors and ripple formation for a moving GTA welding under pulsed currents, Int. J. Heat Mass Transf., 91, 990, 10.1016/j.ijheatmasstransfer.2015.08.046
Guo, 2009, Formation of weld crater in GMAW of aluminum alloys, Int. J. Heat Mass Transf., 52, 5533, 10.1016/j.ijheatmasstransfer.2009.06.028
Desmaison, 2014, A level set approach for the simulation of the multipass hybrid laser/GMA welding process, Comput. Mater. Sci., 91, 240, 10.1016/j.commatsci.2014.04.036
Wang, 2010, Numerical simulation of weld pool keyholing process in stationary plasma arc welding, Acta. Metall. Sin., 46, 984
Sun, 2013, Numerical analysis of transient temperature field and keyhole geometry in controlled pulse key- holing plasma arc welding, Numer. Heat Transf., Part A: Appl., 64, 416, 10.1080/10407782.2013.784142
T. Zhang, C. S. Wu, Y. Feng, Numerical analysis of heat transfer and fluid flow in keyhole plasma arc welding. Numer. Heat Transfer, Part A: Appl. 60 (2011) 685–698.
Jian, 2015, Numerical analysis of the coupled arc-weld pool-keyhole behaviors in stationary plasma arc welding, Int. J. Heat Mass Transf., 84, 839, 10.1016/j.ijheatmasstransfer.2015.01.069
Voller, 1989, The modelling of heat, mass and solute transport in solidification systems, Int. J. Heat Mass Transf., 32, 1719, 10.1016/0017-9310(89)90054-9
Tsao, 1988, Fluid flow and heat transfer in GMA weld pools, Weld. J., 67, 70s
Meng, 2016, Numerical analysis of undercut defect mechanism in high speed gas tungsten arc welding, J. Mater. Process. Technol., 236, 225, 10.1016/j.jmatprotec.2016.05.020
Campbell, 2013, Arc pressure and fluid flow during alternating shielding gases. Part 2: arc force determination, Sci. Technol. Weld. Join., 18, 597, 10.1179/1362171813Y.0000000141
Brackbill, 1992, A continuum method for modeling surface tension, J. of comput. Phys., 100, 335, 10.1016/0021-9991(92)90240-Y
Nishi, 2007, Arc voltage and heat efficiency during plasma arc melting of titanium, Isij Int., 35, 114, 10.2355/isijinternational.35.114
Bai, 2013, Improving prediction accuracy of thermal analysis for weld-based additive manufacturing by calibrating input parameters using IR imaging, Int. J. of Adv. Manuf. Technol., 69, 1087, 10.1007/s00170-013-5102-y
Panwisawas, 2017, Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: experimental and modelling, Acta Mater., 126, 251, 10.1016/j.actamat.2016.12.062
Boivineau, 2006, Thermophysical properties of solid and liquid Ti-6Al-4V alloy, Int. J. Thermophys., 27, 507, 10.1007/PL00021868
Egry, 2010, Thermophysical properties of liquid AlTi-based alloys, Int. J. Thermophys., 31, 949, 10.1007/s10765-010-0704-1
Martina, 2015, Microstructure of interpass rolled wire + arc additive manufacturing ti-6al-4v components, Metall. Mater. Trans. A, 46, 6103, 10.1007/s11661-015-3172-1
P. M. Sequeira Almeida, Process control and development in wire and arc additive manufacturing, PhD thesis, Cranfield University, Cranfield, UK, 2012.