Online droplet anomaly detection from streaming videos in inkjet printing
Tài liệu tham khảo
Prince, 2014, 3d printing: an industrial revolution, J. Electron. Resour. Med. Libr., 11, 39, 10.1080/15424065.2014.877247
Huang, 2020, Unsupervised learning for the droplet evolution prediction and process dynamics understanding in inkjet printing, Addit. Manuf.
Singh, 2010, Inkjet printing process and its applications, Adv. Mater., 22, 673, 10.1002/adma.200901141
Hoath, 2016
Basaran, 2013, Nonstandard inkjets, Annu. Rev. Fluid Mech., 45, 85, 10.1146/annurev-fluid-120710-101148
Tsai, 2009, The micro-droplet behavior of a molten lead-free solder in an inkjet printing process, J. Micromech. Microeng., 19, 10.1088/0960-1317/19/12/125021
Kechagias, 2014, Dimensional accuracy optimization of prototypes produced by polyjet direct 3D printing technology, Adv. Eng. Mech. Mater., 61
Lies, 2018, Machine vision assisted micro-filament detection for real-time monitoring of electrohydrodynamic inkjet printing, Procedia Manuf., 26, 29, 10.1016/j.promfg.2018.07.004
Wang, 2019, Online droplet monitoring in inkjet 3d printing using catadioptric stereo system, IISE Trans., 51, 153, 10.1080/24725854.2018.1532133
Yan, 2014, Image-based process monitoring using low-rank tensor decomposition, IEEE Trans. Autom. Sci. Eng., 12, 216, 10.1109/TASE.2014.2327029
Montgomery, 2007
I. Lauzana, Online change-point detection algorithm for multi-variate data: Applications on human/robot demonstrations, (2018).〈https://github.com/epfl-lasa/changepoint-detection〉.
S. Zhou, N.X. Vinh, J. Bailey, Y. Jia, I. Davidson, Accelerating online cp decompositions for higher order tensors, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2016), 1375–1384.
L.J. Segura, C. Narvaez-Munoz, C. Zhou, H. Sun, Sketch-based tensor decomposition for non-parametric monitoring of electrospinning processes, in: Proceedings of the International Manufacturing Science and Engineering Conference, American Society of Mechanical Engineers, (2020), (Accepted).
Abu-Khalaf, 2019, Optimization of geometry parameters of inkjet-printed silver nanoparticle traces on pdms substrates using response surface methodology, Materials, 12, 3329, 10.3390/ma12203329
Zhou, 2019, High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations, Addit. Manuf., 29
Wijshoff, 2018, Drop dynamics in the inkjet printing process, Curr. Opin. Colloid Interface Sci., 36, 20, 10.1016/j.cocis.2017.11.004
Wang, 2015, Process optimization for inkjet printing of triisopropylsilylethynyl pentacene with single-solvent solutions, Thin Solid Films, 578, 11, 10.1016/j.tsf.2015.02.004
Lee, 2012, Optimization of experimental parameters to suppress nozzle clogging in inkjet printing, Ind. Eng. Chem. Res., 51, 13195, 10.1021/ie301403g
Zhou, 2017, Inkjet-printed small-molecule organic light-emitting diodes: halogen-free inks, printing optimization, and large-area patterning, ACS Appl. Mater. Interfaces, 9, 40533, 10.1021/acsami.7b13355
Xiong, 2012, Optimization of inkjet printed PEDOT:PSS thin films through annealing processes, Org. Electron., 13, 1532, 10.1016/j.orgel.2012.05.005
Rahul, 2017, Optimizing inkjet printing process to fabricate thick ceramic coatings, Ceram. Int., 43, 4513, 10.1016/j.ceramint.2016.12.103
Mueller, 2015, Mechanical properties of parts fabricated with inkjet 3d printing through efficient experimental design, Mater. Des., 86, 902, 10.1016/j.matdes.2015.07.129
G. Cummins, R. Kay, J. Terry, M.P. Desmulliez, A.J. Walton, Optimization and characterization of drop-on-demand inkjet printing process for platinum organometallic inks, in: Proceedings of the 2011 IEEE 13th Electronics Packaging Technology Conference, IEEE, (2011), 256–261.
Das, 2018, Parametric optimization of e-jet based micro manufacturing system through hybrid taguchi methodology, Mater. Today Proc., 5, 6981, 10.1016/j.matpr.2017.11.361
Morrison, 2010, Viscoelasticity in inkjet printing, Rheol. Acta, 49, 619, 10.1007/s00397-009-0419-z
van der Bos, 2014, Velocity profile inside piezoacoustic inkjet droplets in flight: comparison between experiment and numerical simulation, Phys. Rev. Appl., 1, 10.1103/PhysRevApplied.1.014004
Bartolo, 2007, Dynamics of non-newtonian droplets, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.174502
Rahman, 2010, Simulation of droplet generation through electrostatic forces, J. Mech. Sci. Technol., 24, 307, 10.1007/s12206-009-1149-y
Khanzadeh, 2018, Dual process monitoring of metal-based additive manufacturing using tensor decomposition of thermal image streams, Addit. Manuf., 23, 443
Megahed, 2012, A spatiotemporal method for the monitoring of image data, Qual. Reliab. Eng. Int., 28, 967, 10.1002/qre.1287
Sun, 2017, Quality modeling of printed electronics in aerosol jet printing based on microscopic images, J. Manuf. Sci. Eng., 139, 10.1115/1.4035586
H. Yan, M. Grasso, K. Paynabar, B.M. Colosimo, Real-time detection of clustered events in video-imaging data with applications to additive manufacturing, arXiv preprint arXiv:2004.10977.
C. Hawkins, Z. Zhang, Variational bayesian inference for robust streaming tensor factorization and completion, in: Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), IEEE, (2018), 1446–1451.
Mardani, 2015, Subspace learning and imputation for streaming big data matrices and tensors, IEEE Trans. Signal Process., 63, 2663, 10.1109/TSP.2015.2417491
H. Kasai, Online low-rank tensor subspace tracking from incomplete data by cp decomposition using recursive least squares, in: Proceedngs of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, (2016), 2519–2523.
Aminikhanghahi, 2017, A survey of methods for time series change point detection, Knowl. Inf. Syst., 51, 339, 10.1007/s10115-016-0987-z
Y. Li, G. Lin, T. Lau, R. Zeng, A review of changepoint detection models, arXiv preprint arXiv:1908.07136.
R.P. Adams, D.J. MacKay, Bayesian online changepoint detection, arXiv preprint arXiv:0710.3742.
Y. Kawahara, M. Sugiyama, Change-point detection in time-series data by direct density-ratio estimation, in: Proceedings of the 2009 SIAM International Conference on Data Mining, SIAM, (2009), 389–400.
Desobry, 2005, An online kernel change detection algorithm, IEEE Trans. Signal Process., 53, 2961, 10.1109/TSP.2005.851098
Li, 2019, Scan b-statistic for kernel change-point detection, Seq. Anal., 38, 503, 10.1080/07474946.2019.1686886
J. Sun, D. Tao, C. Faloutsos, Beyond streams and graphs: dynamic tensor analysis, in: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, (2006), 374–383.
Harchaoui, 2009, Kernel change-point analysis, Adv. Neural Inf. Process. Syst., 609
Tatbul, 2018, Precision and recall for time series, Adv. Neural Inf. Process. Syst., 1920