Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy

Edgar Pérez-Herrero1, Alberto Fernández-Medarde2
1Department of Chemical Engineering, University of Salamanca (USAL), P/Los Caídos S/N, 37008 Salamanca, Spain
2Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer (USAL-CSIC), Campus Universitario Miguel de Unamuno S/N, 37007 Salamanca, Spain

Tài liệu tham khảo

What You Need to Know About Cancer, National Cancer Institute, U.S. Department of Health and Human Services, 2006. Stein, 2004 McKinnell, 1998 Pollock, 2002, Cancer: lucky draw in the gene raffle, Nature, 417, 906, 10.1038/417906a Hanahan, 2011, Hallmarks of cancer: the next generation, Cell, 144, 646, 10.1016/j.cell.2011.02.013 Fearon, 2008, Progressing from gene mutations to cancer Croce, 2008, Oncogenes and cancer, N. Engl. J. Med., 358, 502, 10.1056/NEJMra072367 Krug, 2002, Tumor suppressor genes in normal and malignant hematopoiesis, Oncogene, 21, 3475, 10.1038/sj.onc.1205322 Park, 2003, Tumor-suppressor genes, 86 Chabner, 2005, Timeline: chemotherapy and the war on cancer, Nat. Rev. Cancer, 5, 65, 10.1038/nrc1529 Papac, 2001, Origins of cancer therapy, Yale J. Biol. Med., 74, 391 Li, 1958, Therapy of choriocarcinoma and related trophoblastic tumors with folic acid and purine antagonists, N. Engl. J. Med., 259, 66, 10.1056/NEJM195807102590204 Devita, 1970, Combination chemotherapy in the treatment of advanced Hodgkin’s disease, Ann. Intern. Med., 73, 881, 10.7326/0003-4819-73-6-881 Jaffe, 1974, Adjuvant methotrexate and citrovorum-factor treatment of osteogenic sarcoma, N. Engl. J. Med., 291, 994, 10.1056/NEJM197411072911902 Boulikas, 2007, Designing platinum compounds in cancer: structures and mechanisms, Cancer Therapy, 5, 537 Goodman, 2001 Centerwatch, FDA Approved Drugs by Therapeutic Area – Oncology. Clinical Trials. Hematology/Oncology (Cancer) Approvals & Safety Notifications, U.S. Food Drug Administration (FDA), U.S. Department of Health and Human Services, 2015. Wu, 2006, Targeted therapy for cancer, J. Cancer Mol., 2, 57 Hughes, 2010, Antibody–drug conjugates for cancer: poised to deliver?, Nat. Rev. Drug Discov., 9, 665, 10.1038/nrd3270 Allen, 2002, Ligand-targeted therapeutics in anticancer therapy, Nat. Rev. Cancer, 2, 750, 10.1038/nrc903 Okarvi, 2008, Peptide-based radiopharmaceuticals and cytotoxic conjugates: potential tools against cancer, Cancer Treat. Rev., 34, 13, 10.1016/j.ctrv.2007.07.017 Danhier, 2010, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery, J. Control. Release, 148, 135, 10.1016/j.jconrel.2010.08.027 Scott, 2012, Antibody therapy of cancer, Nat. Rev. Cancer, 12, 278, 10.1038/nrc3236 Weiner, 2009, Monoclonal antibodies for cancer immunotherapy, The Lancet, 373, 1033, 10.1016/S0140-6736(09)60251-8 Jungbluth, 2003, A monoclonal antibody recognizing human cancers with amplification/overexpression of the human epidermal growth factor receptor, Proc. Natl. Acad. Sci., 100, 639, 10.1073/pnas.232686499 Scott, 1998, Rituximab: a new therapeutic monoclonal antibody for non-Hodgkin’s lymphoma, Cancer Pract., 6, 195, 10.1046/j.1523-5394.1998.006003195.x Cohen, 1999, The development and therapeutic potential of protein kinase inhibitors, Curr. Opin. Chem. Biol., 3, 459, 10.1016/S1367-5931(99)80067-2 Druker, 2001, Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia, N. Engl. J. Med., 344, 1031, 10.1056/NEJM200104053441401 Capdeville, 2002, Glivec (STI571, Imatinib), a rationally developed, targeted anticancer drug, Nat. Rev. Drug Discov., 1, 493, 10.1038/nrd839 Kris, 2003, Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial, JAMA, 290, 2149, 10.1001/jama.290.16.2149 Zogakis, 2001, General aspects of anti-angiogenesis and cancer therapy, Expert Opin. Biol. Therapy, 1, 253, 10.1517/14712598.1.2.253 Schrama, 2006, Antibody targeted drugs as cancer therapeutics, Nat. Rev. Drug Discov., 5, 147, 10.1038/nrd1957 Ornes, 2013, Antibody–drug conjugates, Proc. Natl. Acad. Sci., 110, 13695, 10.1073/pnas.1314120110 Bross, 2001, Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia, Clin. Cancer Res., 7, 1490 Giles, 2001, Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation, Cancer, 92, 406, 10.1002/1097-0142(20010715)92:2<406::AID-CNCR1336>3.0.CO;2-U Wadleigh, 2003, Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation, Blood, 102, 1578, 10.1182/blood-2003-01-0255 Rowe, 2013, Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug, Blood, 121, 4838, 10.1182/blood-2013-03-490482 Foyil, 2011, Brentuximab vedotin for the treatment of CD30+ lymphomas, Immunotherapy, 3, 475, 10.2217/imt.11.15 Gualberto, 2012, Brentuximab vedotin (SGN-35), an antibody–drug conjugate for the treatment of CD30-positive malignancies, Expert Opin. Invest. Drugs, 21, 205, 10.1517/13543784.2011.641532 Verma, 2012, Trastuzumab emtansine for HER2-positive advanced breast cancer, N. Engl. J. Med., 367, 1783, 10.1056/NEJMoa1209124 Boyraz, 2013, Trastuzumab emtansine (T-DM1) for HER2-positive breast cancer, Curr. Med. Res. Opin., 29, 405, 10.1185/03007995.2013.775113 Naumovski, 2010, Glembatumumab vedotin, a conjugate of an anti-glycoprotein non-metastatic melanoma protein B mAb and monomethyl auristatin E for the treatment of melanoma and breast cancer, Curr. Opin. Mol. Ther., 12, 248 Ryan, 2010, Targeting pancreatic and ovarian carcinomas using the auristatin-based anti-CD70 antibody-drug conjugate SGN-75, Br. J. Cancer, 103, 676, 10.1038/sj.bjc.6605816 Alley, 2009, The pharmacologic basis for antibody-auristatin conjugate activity, J. Pharmacol. Exp. Ther., 330, 932, 10.1124/jpet.109.155549 Flygare, 2013, Antibody-drug conjugates for the treatment of cancer, Chem. Biol. Drug Des., 81, 113, 10.1111/cbdd.12085 Sassoon, 2013, Antibody-drug conjugate (ADC) clinical pipeline: a review, Methods Mol. Biol., 10.1007/978-1-62703-541-5_1 Dhar, 2011, Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo, Proc. Natl. Acad. Sci., 108, 1850, 10.1073/pnas.1011379108 Tai, 2011, Development of a peptide-drug conjugate for prostate cancer therapy, Mol. Pharm., 8, 901, 10.1021/mp200007b Karjalainen, 2011, Targeting neuropilin-1 in human leukemia and lymphoma, Blood, 117, 920, 10.1182/blood-2010-05-282921 Schally, 2011, Use of analogs of peptide hormones conjugated to cytotoxic radicals for chemotherapy targeted to receptors on tumors, Curr. Drug Deliv., 8, 11, 10.2174/156720111793663598 Majumdar, 2012, Peptide-mediated targeted drug delivery, Med. Res. Rev., 32, 637, 10.1002/med.20225 Kurzrock, 2012, Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors, Mol. Cancer Ther., 11, 308, 10.1158/1535-7163.MCT-11-0566 Ducry, 2009, Antibody–drug conjugates: linking cytotoxic payloads to monoclonal antibodies, Bioconjug. Chem., 21, 5, 10.1021/bc9002019 Firer, 2012, Targeted drug delivery for cancer therapy: the other side of antibodies, J. Hematol. Oncol., 5, 1, 10.1186/1756-8722-5-70 Northfelt, 1996, Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma, J. Clin. Pharmacol., 36, 55, 10.1002/j.1552-4604.1996.tb04152.x Iyer, 2006, Exploiting the enhanced permeability and retention effect for tumor targeting, Drug Discov. Today, 11, 812, 10.1016/j.drudis.2006.07.005 Davis, 2008, Nanoparticle therapeutics: an emerging treatment modality for cancer, Nat. Rev. Drug Discov., 7, 771, 10.1038/nrd2614 Peer, 2007, Nanocarriers as an emerging platform for cancer therapy, Nat. Nano, 2, 751, 10.1038/nnano.2007.387 Maeda, 2001, The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting, Adv. Enzyme Regul., 41, 189, 10.1016/S0065-2571(00)00013-3 Fang, 2011, The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect, Adv. Drug Deliv. Rev., 63, 136, 10.1016/j.addr.2010.04.009 Arias, 2011, Drug targeting strategies in cancer treatment: an overview, Mini Rev. Med. Chem., 11, 1, 10.2174/138955711793564024 Moghimi, 2001, Long-circulating and target-specific nanoparticles: theory to practice, Pharmacol. Rev., 53, 283 Maeda, 2010, Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects, Bioconjug. Chem., 21, 797, 10.1021/bc100070g Yuan, 1995, Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size, Cancer Res., 55, 3752 Maeda, 2012, Macromolecular therapeutics in cancer treatment: the EPR effect and beyond, J. Control. Release, 164, 138, 10.1016/j.jconrel.2012.04.038 Maruyama, 2011, Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects, Adv. Drug Deliv. Rev., 63, 161, 10.1016/j.addr.2010.09.003 Owens Iii, 2006, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, Int. J. Pharm., 307, 93, 10.1016/j.ijpharm.2005.10.010 Cho, 2008, Therapeutic nanoparticles for drug delivery in cancer, Clin. Cancer Res., 14, 1310, 10.1158/1078-0432.CCR-07-1441 Shenoy, 2005, Poly(ethylene oxide)-modified poly(ɛ-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer, Int. J. Pharm., 293, 261, 10.1016/j.ijpharm.2004.12.010 Gratton, 2008, The effect of particle design on cellular internalization pathways, Proc. Natl. Acad. Sci., 105, 11613, 10.1073/pnas.0801763105 Hong, 2007, The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform, Chem. Biol., 14, 107, 10.1016/j.chembiol.2006.11.015 Talelli, 2013, Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy, Biomaterials, 34, 1255, 10.1016/j.biomaterials.2012.09.064 Mamot, 2012, Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study, Lancet Oncol., 13, 1234, 10.1016/S1470-2045(12)70476-X Tan, 2010, Anti-cancer drug resistance: understanding the mechanisms through the use of integrative genomics and functional RNA interference, Eur. J. Cancer, 46, 2166, 10.1016/j.ejca.2010.03.019 Gottesman, 2002, Multidrug resistance in cancer: role of ATP-dependent transporters, Nat. Rev. Cancer, 2, 48, 10.1038/nrc706 Goren, 2000, Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump, Clin. Cancer Res., 6, 1949 Matsuo, 2001, Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein, J. Control. Release, 77, 77, 10.1016/S0168-3659(01)00460-6 Patil, 2009, Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance, J. Control. Release, 136, 21, 10.1016/j.jconrel.2009.01.021 Maeda, 2001, Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS, J. Control. Release, 74, 47, 10.1016/S0168-3659(01)00309-1 Unezaki, 1996, Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy, Int. J. Pharm., 144, 11, 10.1016/S0378-5173(96)04674-1 Jain, 1994, Barriers to drug delivery in solid tumors, Sci. Am., 271, 58, 10.1038/scientificamerican0794-58 Kirpotin, 2006, Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models, Cancer Res., 66, 6732, 10.1158/0008-5472.CAN-05-4199 Lammers, 2012, Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress, J. Control. Release, 161, 175, 10.1016/j.jconrel.2011.09.063 Jain, 2010, Delivering nanomedicine to solid tumors, Nat. Rev. Clin. Oncol., 7, 653, 10.1038/nrclinonc.2010.139 Johannsen, 1990, The tumour-targeting human L19-IL2 immunocytokine: preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma, Eur. J. Cancer (Oxford, England), 46, 2926 Kimball, 2010, A phase I study of a tropism-modified conditionally replicative adenovirus for recurrent malignant gynecologic diseases, Clin. Cancer Res., 16, 5277, 10.1158/1078-0432.CCR-10-0791 Nokisalmi, 2010, Oncolytic adenovirus ICOVIR-7 in patients with advanced and refractory solid tumors, Clin. Cancer Res., 16, 3035, 10.1158/1078-0432.CCR-09-3167 Choi, 2010, Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles, Proc. Natl. Acad. Sci. USA, 107, 1235, 10.1073/pnas.0914140107 Farokhzad, 2009, Impact of nanotechnology on drug delivery, ACS Nano, 3, 16, 10.1021/nn900002m Zhang, 2007, Nanoparticles in medicine: therapeutic applications and developments, Clin. Pharmacol. Ther., 83, 761, 10.1038/sj.clpt.6100400 Duncan, 2006, Polymer conjugates as anticancer nanomedicines, Nat. Rev. Cancer, 6, 688, 10.1038/nrc1958 Duncan, 2003, The dawning era of polymer therapeutics, Nat. Rev. Drug Discov., 2, 347, 10.1038/nrd1088 Bildstein, 2011, Prodrug-based intracellular delivery of anticancer agents, Adv. Drug Deliv. Rev., 63, 3, 10.1016/j.addr.2010.12.005 Goodarzi, 2013, A review of polysaccharide cytotoxic drug conjugates for cancer therapy, Carbohydr. Polym., 92, 1280, 10.1016/j.carbpol.2012.10.036 Taguchi, 1991, Phase II study of YM881 (zinostatin stimalamer) suspension injected into the hepatic artery. Research Group for Intra-arterial Injection Therapy with YM881, Gan To Kagaku Ryoho, 18, 1665 Abe, 2002, Styrene maleic acid neocarzinostatin treatment for hepatocellular carcinoma, Curr. Med. Chem. Anticancer Agents, 2, 715, 10.2174/1568011023353679 Ho, 1986, Clinical pharmacology of polyethylene glycol-l-asparaginase, Drug Metab. Dispos., 14, 349 Fuertges, 1990, The clinical efficacy of poly(ethylene glycol)-modified proteins, J. Control. Release, 11, 139, 10.1016/0168-3659(90)90127-F Graham, 2003, Pegaspargase: a review of clinical studies, Adv. Drug Deliv. Rev., 55, 1293, 10.1016/S0169-409X(03)00110-8 Dinndorf, 2007, FDA drug approval summary: pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (ALL), Oncologist, 12, 991, 10.1634/theoncologist.12-8-991 Masetti, 2009, First-line treatment of acute lymphoblastic leukemia with pegasparaginase, Biologics, 3, 359 Cheng, 2007, Pegylated recombinant human arginase (rhArg-peg5,000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion, Cancer Res., 67, 309, 10.1158/0008-5472.CAN-06-1945 Yau, 2013, A phase 1 dose-escalating study of pegylated recombinant human arginase 1 (Peg-rhArg1) in patients with advanced hepatocellular carcinoma, Invest. New Drugs, 31, 99, 10.1007/s10637-012-9807-9 Izzo, 2004, Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies, J. Clin. Oncol., 22, 1815, 10.1200/JCO.2004.11.120 Ascierto, 2005, Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies, J. Clin. Oncol., 23, 7660, 10.1200/JCO.2005.02.0933 C. Mueller, S. Al-Batran, E. Jaeger, M. Bausch, N. Sethuraman, C. Unger, A phase I trial of PEGylated glutaminase (PEG-PGA) in combination with 6-diazo-5-oxo-l-norleucine (DON) in advanced, refractory, solid tumors, in: 2007 ASCO Annual Meeting Proceedings, 2007 (J. Clin. Oncol.). C. Mueller, S. Al-Batran, E. Jaeger, B. Schmidt, M. Bausch, N. Sethuraman, C. Unger, N. Setuhuraman, A phase IIa study of PEGylated glutaminase (PEG-PGA) plus 6-diazo-5-oxo-l-norleucine (DON) in patients with advanced refractory solid tumors, in: 2008 ASCO Annual Meeting Proceedings, 2008 (J. Clin. Oncol.). Bukowski, 1993, Polyethylene glycol conjugated interleukin-2: clinical and immunologic effects in patients with advanced renal cell carcinoma, Invest. New Drugs, 11, 211, 10.1007/BF00874158 Yang, 1995, The use of polyethylene glycol-modified interleukin-2 (PEG-IL-2) in the treatment of patients with metastatic renal cell carcinoma and melanoma. A phase I study and a randomized prospective study comparing IL-2 alone versus IL-2 combined with PEG-IL-2, Cancer, 76, 687, 10.1002/1097-0142(19950815)76:4<687::AID-CNCR2820760424>3.0.CO;2-M Kaplan, 2000, Effect of perilesional injections of PEG-interleukin-2 on basal cell carcinoma, Dermatol. Surg., 26, 1037, 10.1046/j.1524-4725.2000.0260111037.x Bukowski, 2002, Pegylated interferon alfa-2b treatment for patients with solid tumors: a phase I/II study, J. Clin. Oncol., 20, 3841, 10.1200/JCO.2002.02.051 Vaishampayan, 2007, Phase II trial of pegylated interferon and thalidomide in malignant metastatic melanoma, Anticancer Drugs, 18, 1221, 10.1097/CAD.0b013e3282eea391 Groves, 2009, Two phase II trials of temozolomide with interferon-[alpha]2b (pegylated and non-pegylated) in patients with recurrent glioblastoma multiforme, Br. J. Cancer, 101, 615, 10.1038/sj.bjc.6605189 Clark, 2007, Phase I/II trial of outpatient PEG-interferon with interleukin-2 in advanced renal cell carcinoma: a cytokine working group study, J. Immunother., 30, 839, 10.1097/CJI.0b013e3181587977 Michallet, 2003, Pegylated recombinant interferon alpha-2b vs recombinant interferon alpha-2b for the initial treatment of chronic-phase chronic myelogenous leukemia: a phase III study, Leukemia, 18, 309, 10.1038/sj.leu.2403217 Eggermont, 2008, Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial, Lancet, 372, 117, 10.1016/S0140-6736(08)61033-8 Lipton, 2007, Phase II, randomized, multicenter, comparative study of peginterferon-alpha-2a (40 kD) (Pegasys) versus interferon alpha-2a (Roferon-A) in patients with treatment-naive, chronic-phase chronic myelogenous leukemia, Leuk. Lymphoma, 48, 497, 10.1080/10428190601175393 Ton, 2007, Phase I evaluation of CDP791, a PEGylated di-Fab’ conjugate that binds vascular endothelial growth factor receptor 2, Clin. Cancer Res., 13, 7113, 10.1158/1078-0432.CCR-07-1550 Pasut, 2009, PEG conjugates in clinical development or use as anticancer agents: an overview, Adv. Drug Deliv. Rev., 61, 1177, 10.1016/j.addr.2009.02.010 Davis, 2002, The origin of pegnology, Adv. Drug Deliv. Rev., 54, 457, 10.1016/S0169-409X(02)00021-2 Harris, 2003, Effect of pegylation on pharmaceuticals, Nat. Rev. Drug Discov., 2, 214, 10.1038/nrd1033 Pasut, 2004, Protein, peptide and non-peptide drug PEGylation for therapeutic application, Expert Opin. Ther. Pat., 14, 859, 10.1517/13543776.14.6.859 Haag, 2006, Polymer therapeutics: concepts and applications, Angew. Chem. Int. Ed., 45, 1198, 10.1002/anie.200502113 Duncan, 2011, Nanomedicine(s) under the microscope, Mol. Pharm., 8, 2101, 10.1021/mp200394t Banerjee, 2012, Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications, J. Drug Deliv., 103973, 7 Alconcel, 2011, FDA-approved poly(ethylene glycol)-protein conjugate drugs, Polym. Chem., 2, 1442, 10.1039/c1py00034a Duncan, 2013, Polymer therapeutics-prospects for 21st century: the end of the beginning, Adv. Drug Deliv. Rev., 65, 60, 10.1016/j.addr.2012.08.012 Canal, 2011, Polymer–drug conjugates as nano-sized medicines, Curr. Opin. Biotechnol., 22, 894, 10.1016/j.copbio.2011.06.003 Rajender Reddy, 2002, Use of peginterferon alfa-2a (40 KD) (Pegasys®) for the treatment of hepatitis C, Adv. Drug Deliv. Rev., 54, 571, 10.1016/S0169-409X(02)00028-5 Schlesinger, 2011, Pegloticase, Nat. Rev. Drug Discov., 10, 17, 10.1038/nrd3349 Trainer, 2000, Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant, N. Engl. J. Med., 342, 1171, 10.1056/NEJM200004203421604 van der Lely, 2001, Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist, Lancet, 358, 1754, 10.1016/S0140-6736(01)06844-1 Parkinson, 2003, Pegvisomant in the treatment of acromegaly, Adv. Drug Deliv. Rev., 55, 1303, 10.1016/S0169-409X(03)00111-X Molineux, 2004, The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta), Curr. Pharm. Des., 10, 1235, 10.2174/1381612043452613 Vogel, 2005, First and subsequent cycle use of pegfilgrastim prevents febrile neutropenia in patients with breast cancer: a multicenter, double-blind, placebo-controlled phase III study, J. Clin. Oncol., 23, 1178, 10.1200/JCO.2005.09.102 Green, 2003, A randomized double-blind multicenter phase III study of fixed-dose single-administration pegfilgrastim versus daily filgrastim in patients receiving myelosuppressive chemotherapy, Ann. Oncol., 14, 29, 10.1093/annonc/mdg019 Sandborn, 2010, Certolizumab pegol in patients with moderate to severe Crohn’s disease and secondary failure to infliximab, Clin. Gastroenterol. Hepatol.: Off. Clin. Pract. J. Am. Gastroenterol. Assoc., 8, 688, 10.1016/j.cgh.2010.04.021 Macdougall, 2006, Novel strategies for stimulating erythropoiesis and potential new treatments for anaemia, Lancet, 368, 947, 10.1016/S0140-6736(06)69120-4 Calvo-Gonzalez, 2008, Combined pegaptanib sodium (macugen) and photodynamic therapy in predominantly classic juxtafoveal choroidal neovascularisation in age related macular degeneration, Br. J. Ophthalmol., 92, 74, 10.1136/bjo.2007.128942 Vavvas, 2006, Pegaptanib (macugen): treating neovascular age-related macular degeneration and current role in clinical practice, Ophthalmol. Clin. N. Am., 19, 353 Rinaldi, 2013, Intravitreal pegaptanib sodium (macugen) for treatment of myopic choroidal neovascularization: a morphologic and functional study, Retina, 33, 397, 10.1097/IAE.0b013e318261a73c Egusquiaguirre, 2012, Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research, Clin. Transl. Oncol., 14, 83, 10.1007/s12094-012-0766-6 Rademaker-Lakhai, 2004, A phase I and pharmacological study of the platinum polymer AP5280 given as an intravenous infusion once every 3 weeks in patients with solid tumors, Clin. Cancer Res., 10, 3386, 10.1158/1078-0432.CCR-03-0315 Nowotnik, 2009, ProLindac™ (AP5346): a review of the development of an HPMA DACH platinum polymer therapeutic, Adv. Drug Deliv. Rev., 61, 1214, 10.1016/j.addr.2009.06.004 Seymour, 2009, Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer, Int. J. Oncol., 34, 1629, 10.3892/ijo_00000293 Danhauser-Riedl, 1993, Phase I clinical and pharmacokinetic trial of dextran conjugated doxorubicin (AD-70, DOX-OXD), Invest. New Drugs, 11, 187, 10.1007/BF00874153 Homsi, 2007, Phase I trial of poly-l-glutamate camptothecin (CT-2106) administered weekly in patients with advanced solid malignancies, Clin. Cancer Res., 13, 5855, 10.1158/1078-0432.CCR-06-2821 Bissett, 2004, Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT), Br. J. Cancer, 91, 50, 10.1038/sj.bjc.6601922 Soepenberg, 2005, Phase I and pharmacokinetic study of DE-310 in patients with advanced solid tumors, Clin. Cancer Res., 11, 703, 10.1158/1078-0432.CCR-04-1758 Davis, 2009, Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin, Adv. Drug Deliv. Rev., 61, 1189, 10.1016/j.addr.2009.05.005 Yurkovetskiy, 2009, XMT-1001, a novel polymeric camptothecin pro-drug in clinical development for patients with advanced cancer, Adv. Drug Deliv. Rev., 61, 1193, 10.1016/j.addr.2009.01.007 Scott, 2009, A phase II study of pegylated-camptothecin (pegamotecan) in the treatment of locally advanced and metastatic gastric and gastro-oesophageal junction adenocarcinoma, Cancer Chemother. Pharmacol., 63, 363, 10.1007/s00280-008-0746-2 Weiss, 2013, First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies, Invest. New Drugs, 1 Z. Guo, J.J. Wheler, A. Naing, S. Mani, S. Goel, M. Mulcahy, F. Gamza, C. Longley, A. Buchbinder, R. Kurzrock, Clinical pharmacokinetics (PK) of EZN-2208, a novel anticancer agent, in patients (pts) with advanced malignancies: a phase I, first-in-human, dose-escalation study, in: 2008 ASCO Annual Meeting Proceedings, American Society of Clinical Oncology, 2008 (J. Clin. Oncol.). D.D. Von Hoff, G. Jameson, M.J. Borad, L.S. Rosen, J. Utz, S. Dhar, L. Acosta, T. Barker, J. Walling, J.T. Hamm, First phase I trial of NKTR-102 (PEG-irinotecan) reveals early evidence of broad anti-tumor activity in three schedules, in: 20th, EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, Elsevier, Amsterdam, 2008 (Eur. J. Cancer). Zhao, 2008, Novel prodrugs of SN38 using multiarm poly(ethylene glycol) linkers, Bioconjug. Chem., 19, 849, 10.1021/bc700333s Veltkamp, 2008, Clinical and pharmacologic study of the novel prodrug delimotecan (MEN 4901/T-0128) in patients with solid tumors, Clin. Cancer Res., 14, 7535, 10.1158/1078-0432.CCR-08-0438 Meerum Terwogt, 2001, Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel, Anticancer Drugs, 12, 315, 10.1097/00001813-200104000-00003 Bassi, 2011, Paclitaxel-hyaluronic acid for intravesical therapy of Bacillus Calmette-Guérin refractory carcinoma in situ of the bladder: results of a phase I study, J. Urol., 185, 445, 10.1016/j.juro.2010.09.073 Ng, 2010, Neoadjuvant paclitaxel poliglumex (PPX), cisplatin, and radiation (RT) for esophageal cancer, Gastrointest. Cancer Res., 28, 4085 Sabbatini, 2004, Phase II study of CT-2103 in patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma, J. Clin. Oncol., 22, 4523, 10.1200/JCO.2004.12.043 Langer, 2008, Phase III trial comparing paclitaxel poliglumex (CT-2103, PPX) in combination with carboplatin versus standard paclitaxel and carboplatin in the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer, J. Thorac. Oncol., 3, 623, 10.1097/JTO.0b013e3181753b4b Bolling, 2006, Phase II study of MTX-HSA in combination with cisplatin as first line treatment in patients with advanced or metastatic transitional cell carcinoma, Invest. New Drugs, 24, 521, 10.1007/s10637-006-8221-6 A. Awada, S. Chan, G. Jerusalem, M. Huizing, R. Coleman, A. Mehdi, S. O’Reilly, J. Hamm, T. Patel, A. Hannah, L. Masuoka, A. Garcia, E. Perez, Significant efficacy in a phase 2 study of NKTR-102, a novel polymer conjugate of irinotecan, in patients with pre-treated metastatic breast cancer (MBC), in: Thirty-Third Annual CTRC-AACR San Antonio Breast Cancer Symposium, Cancer Research, American Association for Cancer Research, San Antonio, TX, USA, 2010. I.B. Vergote, J.P. Micha, C.H. Pippitt Jr., G.G. Rao, D.L. Spitz, N. Reed, G.G. Dark, A. Garcia, D.J. Maslyar, G.J. Rustin, Phase II study of NKTR-102 in women with platinum-resistant/refractory ovarian cancer, in: 2010 ASCO Annual Meeting, ASCO University, 2010 (J. Clin. Oncol.). Opaxio by Cell Therapeutics Inc. Duncan, 2009, Development of HPMA copolymer–anticancer conjugates: clinical experience and lessons learnt, Adv. Drug Deliv. Rev., 61, 1131, 10.1016/j.addr.2009.05.007 Duncan, 2005, N-(2-hydroxypropyl)methacrylamide copolymer conjugates, 1 Vasey, 1999, Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents—drug-polymer conjugates, Clin. Cancer Res., 5, 83 Kopecek, 2000, HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action, Eur. J. Pharm. Biopharm., 50, 61, 10.1016/S0939-6411(00)00075-8 Kopecek, 2010, HPMA copolymers: origins, early developments, present, and future, Adv. Drug Deliv. Rev., 62, 122, 10.1016/j.addr.2009.10.004 Duncan, 2011, Polymer therapeutics as nanomedicines: new perspectives, Curr. Opin. Biotechnol., 22, 492, 10.1016/j.copbio.2011.05.507 Duncan, 2010, Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities, Adv. Drug Deliv. Rev., 62, 272, 10.1016/j.addr.2009.12.005 Young, 2011, CRLX101 (formerly IT-101) – a novel nanopharmaceutical of camptothecin in clinical development, Curr. Bioact. Compd., 7, 8, 10.2174/157340711795163866 Jones, 2008, A phase II open-label study of DHA-paclitaxel (Taxoprexin) by 2-h intravenous infusion in previously untreated patients with locally advanced or metastatic gastric or oesophageal adenocarcinoma, Cancer Chemother. Pharmacol., 61, 435, 10.1007/s00280-007-0486-8 Payne, 2006, DHA-paclitaxel (Taxoprexin) as first-line treatment in patients with stage IIIB or IV non-small cell lung cancer: report of a phase II open-label multicenter trial, J. Thorac. Oncol., 1, 984, 10.1097/01243894-200611000-00011 Fracasso, 2009, Phase 1 and pharmacokinetic study of weekly docosahexaenoic acid-paclitaxel, Taxoprexin®, in resistant solid tumor malignancies, Cancer Chemother. Pharmacol., 63, 451, 10.1007/s00280-008-0756-0 Bedikian, 2011, Phase 3 study of docosahexaenoic acid-paclitaxel versus dacarbazine in patients with metastatic malignant melanoma, Ann. Oncol., 22, 787, 10.1093/annonc/mdq438 Low, 2004, Folate receptor-targeted drugs for cancer and inflammatory diseases, Adv. Drug Deliv. Rev., 56, 1055, 10.1016/j.addr.2004.02.003 Seymour, 2002, Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin, J. Clin. Oncol., 20, 1668, 10.1200/JCO.20.6.1668 Eldar-Boock, 2011, Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel, Biomaterials, 32, 3862, 10.1016/j.biomaterials.2011.01.073 Segal, 2009, Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics, PLoS ONE, 4, 21, 10.1371/journal.pone.0005233 Miller, 2009, Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer–alendronate–taxane conjugate, Angew. Chem. Int. Ed., 48, 2949, 10.1002/anie.200805133 Varticovski, 2001, Water-soluble HPMA copolymer–wortmannin conjugate retains phosphoinositide 3-kinase inhibitory activity in vitro and in vivo, J. Control. Release, 74, 275, 10.1016/S0168-3659(01)00349-2 Larson, 2010, HPMA copolymer-aminohexylgeldanamycin conjugates targeting cell surface expressed GRP78 in prostate cancer, Pharm. Res., 27, 2683, 10.1007/s11095-010-0267-7 Borgman, 2009, Targetable HPMA copolymer-aminohexylgeldanamycin conjugates for prostate cancer therapy, Pharm. Res., 26, 1407, 10.1007/s11095-009-9851-0 Bae, 2007, Intelligent biosynthetic nanobiomaterials for hyperthermic combination chemotherapy and thermal drug targeting of HSP90 inhibitor geldanamycin, J. Control. Release, 122, 16, 10.1016/j.jconrel.2007.06.005 Vicent, 2007, Polymer-drug conjugates as modulators of cellular apoptosis, AAPS J., 9, E200, 10.1208/aapsj0902022 Li, 2009, Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1, Mol. Pharmacol., 76, 81, 10.1124/mol.109.054551 Oman, 2005, Using N-(2-hydroxypropyl)methacrylamide copolymer drug bioconjugate as a novel approach to deliver a Bcl-2-targeting compound HA14-1 in vivo, AACR Meet. Abstr., 2005, 333-a Segal, 2009, Design and development of polymer conjugates as anti-angiogenic agents, Adv. Drug Deliv. Rev., 61, 1159, 10.1016/j.addr.2009.06.005 Satchi-Fainaro, 2004, Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470, Nat. Med., 10, 255, 10.1038/nm1002 Satchi-Fainaro, 2005, Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin, Cancer Cell, 7, 251, 10.1016/j.ccr.2005.02.007 Benny, 2008, An orally delivered small-molecule formulation with antiangiogenic and anticancer activity, Nat. Biotechnol., 26, 799, 10.1038/nbt1415 Schütz, 2013, Therapeutic nanoparticles in clinics and under clinical evaluation, Nanomedicine, 8, 449, 10.2217/nnm.13.8 Sahoo, 2003, Nanotech approaches to drug delivery and imaging, Drug Discov. Today, 8, 1112, 10.1016/S1359-6446(03)02903-9 Malam, 2009, Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer, Trends Pharmacol. Sci., 30, 592, 10.1016/j.tips.2009.08.004 Blanco, 2011, Nanomedicine in cancer therapy: innovative trends and prospects, Cancer Sci., 102, 1247, 10.1111/j.1349-7006.2011.01941.x Szebeni, 2000, Liposome-induced pulmonary hypertension: properties and mechanism of a complement-mediated pseudoallergic reaction, Am. J. Physiol. Heart Circ. Physiol., 279, H1319, 10.1152/ajpheart.2000.279.3.H1319 Szebeni, 2005, Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity, Toxicology, 216, 106, 10.1016/j.tox.2005.07.023 Szebeni, 2001, Complement activation-related pseudoallergy caused by liposomes, micellar carriers of intravenous drugs, and radiocontrast agents, Crit. Rev. Ther. Drug Carrier Syst., 18, 567, 10.1615/CritRevTherDrugCarrierSyst.v18.i6.50 Zalipsky, 2007, Antitumor activity of new liposomal prodrug of mitomycin C in multidrug resistant solid tumor: insights of the mechanism of action, J. Drug Target., 15, 518, 10.1080/10611860701499946 Moghimi, 2003, Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties, Prog. Lipid Res., 42, 463, 10.1016/S0163-7827(03)00033-X Brown, 2012, The treatment of breast cancer using liposome technology, J. Drug Deliv., 212965, 21 Infante, 2012, Phase I and pharmacokinetic study of IHL-305 (PEGylated liposomal irinotecan) in patients with advanced solid tumors, Cancer Chemother. Pharmacol., 70, 699, 10.1007/s00280-012-1960-5 Kono, 2010, Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy, Biomaterials, 31, 7096, 10.1016/j.biomaterials.2010.05.045 Shroeder, 2009, Ultrasound triggered release of cisplatin from liposomes in murine tumors, J. Control. Release, 137, 105 Simões, 2004, On the formulation of pH-sensitive liposomes with long circulation times, Adv. Drug Deliv. Rev., 56, 947, 10.1016/j.addr.2003.10.038 Carter, 2001, Improving the efficacy of antibody-based cancer therapies, Nat. Rev. Cancer, 1, 118, 10.1038/35101072 Torchilin, 2005, Recent advances with liposomes as pharmaceutical carriers, Nat. Rev. Drug Discov., 4, 145, 10.1038/nrd1632 Huwyler, 2008, Tumor targeting using liposomal antineoplastic drugs, Int. J. Nanomed., 3, 21, 10.2147/IJN.S1253 Kontermann, 2006, Immunoliposomes for cancer therapy, Curr. Opin. Mol. Ther., 8, 39 Drummond, 2010, Development of a highly stable and targetable nanoliposomal formulation of topotecan, J. Control. Release, 141, 13, 10.1016/j.jconrel.2009.08.006 Torchilin, 2001, P-nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups, Biochim. Biophys. Acta (BBA) – Biomembr., 1511, 397, 10.1016/S0005-2728(01)00165-7 Torchilin, 2007, Targeted pharmaceutical nanocarriers for cancer therapy and imaging, AAPS J., 9, E128, 10.1208/aapsj0902015 Fan, 2013, Development of liposomal formulations: from concept to clinical investigations, Asian J. Pharm. Sci., 8, 81, 10.1016/j.ajps.2013.07.010 Northfelt, 1998, Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial, J. Clin. Oncol., 16, 2445, 10.1200/JCO.1998.16.7.2445 Silverman, 2013, Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine, Cancer Chemother. Pharmacol., 71, 555, 10.1007/s00280-012-2042-4 Stathopoulos, 2012, Lipoplatin formulation review article, J. Drug Deliv., 581363 Tippayamontri, 2011, Cellular uptake and cytoplasm/DNA distribution of cisplatin and oxaliplatin and their liposomal formulation in human colorectal cancer cell HCT116, Invest. New Drugs, 29, 1321, 10.1007/s10637-010-9494-3 Tippayamontri, 2012, Synergism in concomitant chemoradiotherapy of cisplatin and oxaliplatin and their liposomal formulation in the human colorectal cancer HCT116 model, Anticancer Res., 32, 4395 Liu, 2013, Application of liposomal technologies for delivery of platinum analogs in oncology, Int. J. Nanomed., 8, 3309 Tippayamontri, 2013, Efficacy of cisplatin and lipoplatin in combined treatment with radiation of a colorectal tumor in nude mouse, Anticancer Res., 33, 3005 Zalba, 2013, Liposomes, a promising strategy for clinical application of platinum derivatives, Expert Opin. Drug Deliv., 10, 829, 10.1517/17425247.2013.778240 Ando, 2011, Mifamurtide for the treatment of nonmetastatic osteosarcoma, Expert Opin. Pharmacother., 12, 285, 10.1517/14656566.2011.543129 Luetke, 2013, Osteosarcoma treatment – where do we stand? A state of the art review, Cancer Treat. Rev., 27 Frampton, 2010, Mifamurtide: a review of its use in the treatment of osteosarcoma, Paediatr. Drugs, 12, 141, 10.2165/11204910-000000000-00000 Zheng, 2011, Characterization of 9-nitrocamptothecin liposomes: anticancer properties and mechanisms on hepatocellular carcinoma in vitro and in vivo, PLoS ONE, 6, 9 Zamboni, 2008, Concept and clinical evaluation of carrier-mediated anticancer agents, Oncologist, 13, 248, 10.1634/theoncologist.2007-0180 Seetharamu, 2010, Phase II study of liposomal cisplatin (SPI-77) in platinum-sensitive recurrences of ovarian cancer, Anticancer Res., 30, 541 White, 2006, Phase II study of SPI-77 (sterically stabilised liposomal cisplatin) in advanced non-small-cell lung cancer, Br. J. Cancer, 95, 822, 10.1038/sj.bjc.6603345 Harrington, 2001, Phase I-II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer, Ann. Oncol., 12, 493, 10.1023/A:1011199028318 Stathopoulos, 2006, Liposomal oxaliplatin in the treatment of advanced cancer: a phase I study, Anticancer Res., 26, 1489 Anajwala, 2010, Current trends of nanotechnology for cancer therapy, Int. J. Pharm. Sci. Nanotechnol., 3, 1043 Surendiran, 2009, Novel applications of nanotechnology in medicine, Indian J. Med. Res., 130, 689 Slingerland, 2012, Liposomal drug formulations in cancer therapy: 15 years along the road, Drug Discov. Today, 17, 160, 10.1016/j.drudis.2011.09.015 Koudelka, 2012, Liposomal paclitaxel formulations, J. Control. Release, 163, 322, 10.1016/j.jconrel.2012.09.006 Wittgen, 2006, Assessing a system to capture stray aerosol during inhalation of nebulized liposomal cisplatin, J. Aerosol Med., 19, 385, 10.1089/jam.2006.19.385 Gaspar, 2008, Inhaled liposomes current strategies and future challenges, J. Biomed. Nanotechnol., 4, 245, 10.1166/jbn.2008.334 Duffaud, 2004, Phase II study of OSI-211 (liposomal lurtotecan) in patients with metastatic or loco-regional recurrent squamous cell carcinoma of the head and neck: an EORTC New Drug Development Group Study, Eur. J. Cancer, 40, 2748 Seiden, 2004, A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer, Gynecol. Oncol., 93, 229, 10.1016/j.ygyno.2003.12.037 Tomkinson, 2003, OSI-211, a novel liposomal topoisomerase I inhibitor, is active in SCID mouse models of human AML and ALL, Leuk. Res., 27, 1039, 10.1016/S0145-2126(03)00092-4 Gelmon, 2004, A phase 1 study of OSI-211 given as an intravenous infusion days 1, 2, and 3 every three weeks in patients with solid cancers, Invest. New Drugs, 22, 263, 10.1023/B:DRUG.0000026252.86842.e2 Beutel, 2005, Phase I study of OSI-7904L, a novel liposomal thymidylate synthase inhibitor in patients with refractory solid tumors, Clin. Cancer Res., 11, 5487, 10.1158/1078-0432.CCR-05-0104 Clamp, 2008, A phase I and pharmacokinetic study of OSI-7904L, a liposomal thymidylate synthase inhibitor in combination with oxaliplatin in patients with advanced colorectal cancer, Cancer Chemother. Pharmacol., 61, 579, 10.1007/s00280-007-0509-5 Falk, 2006, Multicentre phase II pharmacokinetic and pharmacodynamic study of OSI-7904L in previously untreated patients with advanced gastric or gastroesophageal junction adenocarcinoma, Br. J. Cancer, 95, 450, 10.1038/sj.bjc.6603267 Booser, 2002, Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer, Cancer Chemother. Pharmacol., 50, 6, 10.1007/s00280-002-0464-0 Wang, 2009, Nanoparticles for cancer diagnosis and therapy, 209 Thomas, 2002, New agents in the treatment of acute lymphocytic leukaemia, Best Pract. Res. Clin. Haematol., 15, 771, 10.1053/beha.2003.0234 Deeken, 2013, A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies, Cancer Chemother. Pharmacol., 71, 627, 10.1007/s00280-012-2048-y Kan, 2011, A liposomal formulation able to incorporate a high content of paclitaxel and exert promising anticancer effect, J. Drug Deliv., 629234, 11 Zhang, 2004, Development and characterization of a novel liposome-based formulation of SN-38, Int. J. Pharm., 270, 93, 10.1016/j.ijpharm.2003.10.015 Pal, 2005, Preclinical safety, pharmacokinetics and antitumor efficacy profile of liposome-entrapped SN-38 formulation, Anticancer Res., 25, 331 P.J. Gaillard, W. Gladdines, C.C. Apperldorn, J. Rip, W.J. Boogerd, J.H. Beijnen, D. Brandsma, O.v. Tellingen, Development of glutathione pegylated liposomal doxorubicin (2B3-101) for the treatment of brain cancer, in: AACR 103rd Annual Meeting 2012, American Association for Cancer Research, Chicago, IL, USA, 2012. Dragovich, 2006, A phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer, Cancer Chemother. Pharmacol., 58, 759, 10.1007/s00280-006-0235-4 Lu, 2005, Phase II study of a liposome-entrapped cisplatin analog (L-NDDP) administered intrapleurally and pathologic response rates in patients with malignant pleural mesothelioma, J. Clin. Oncol., 23, 3495, 10.1200/JCO.2005.00.802 Riggio, 2011, Nano-oncology: clinical application for cancer therapy and future perspectives, J. Nanomater., 10.1155/2011/164506 Zamboni, 2009, Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies, Clin. Cancer Res., 15, 1466, 10.1158/1078-0432.CCR-08-1405 A.C. Mita, N.N. Senzer, S. Vemulapalli, J. Sarantopoulos, D. Mahalingam, M.M. Mita, J. Hart, N.S. Gallegos, G. Anderson, J. Charles, A. Kosuba, J.M. Rogers, J.J. Nemunaitis, ATI-1123, a novel human albumin-stabilized docetaxel liposomal formulation: final results of a phase I study in patients with advanced solid malignancies, in: AACR-NCI-EORTC International Conference. Molecular Targets and Cancer Therapeutics, San Francisco, CA, USA, 2011. D. Mahalingam, A. Mita, A. Kousba, S. Vemulapalli, N. Gallegos, G. Anderson, J. Charles, J.M. Rogers, J. Sarantopoulos, M. Mita, N. Senzer, J. Nemunaitis, Phase 1 pharmacokinetic (PK) assessments of ATI-1123, a novel human serum albumin-stabilized nanoparticle docetaxel liposomal formulation, in patients with advanced solid malignancies, in: AACR-NCI-EORTC International Conference. Molecular Targets and Cancer Therapeutics, Molecular Cancer Therapeutics, San Francisco, CA, USA, 2011. Matsuzaki, 2012, Antitumor activity of IHL-305, a novel pegylated liposome containing irinotecan, in human xenograft models, Oncol. Rep., 27, 189 Dritschilo, 2006, Phase I study of liposome-encapsulated c-raf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies, Clin. Cancer Res., 12, 1251, 10.1158/1078-0432.CCR-05-1260 Rudin, 2004, Delivery of a liposomal c-raf-1 antisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors: a phase I study, Clin. Cancer Res., 10, 7244, 10.1158/1078-0432.CCR-04-0642 Neville, 2000, Biopharmaceutics of liposomal interleukin 2, oncolipin, Cytokine, 12, 1691, 10.1006/cyto.2000.0769 Dicko, 2010, Use of nanoscale delivery systems to maintain synergistic drug ratios in vivo, Expert Opin. Drug Deliv., 7, 1329, 10.1517/17425247.2010.538678 May, 2013, Hyperthermia-induced drug targeting, Expert Opin. Drug Deliv., 10, 511, 10.1517/17425247.2013.758631 J.E. Lancet, J.E. Cortes, D.E. Hogge, M. Tallman, T. Kovacsovics, L.E. Damon, E. Ritchie, R.S. Komrokji, A.C. Louie, E.J. Feldman, Phase 2B randomized study of CPX-351 vs. cytarabine (CYT) + daunorubicin (DNR) (7+3 regimen) in newly diagnosed AML patients aged 60–75, in: 53rd ASH Annual Meeting and Exposition, 2011. Feldman, 2011, First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia, J. Clin. Oncol., 29, 979, 10.1200/JCO.2010.30.5961 Feldman, 2012, Pharmacokinetics of CPX-351; a nano-scale liposomal fixed molar ratio formulation of cytarabine:daunorubicin, in patients with advanced leukemia, Leuk. Res., 36, 1283, 10.1016/j.leukres.2012.07.006 Batist, 2009, Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors, Clin. Cancer Res., 15, 692, 10.1158/1078-0432.CCR-08-0515 B. O’Connor, S. Lewis, N. Borys, Phase I/II study evaluating the maximum tolerated dose, pharmacokinetics, safety, and efficacy of hyperthermia and lyso-thermosensitive liposomal doxorubicin in patients with breast cancer recurrence at the chest wall, in: 2010 Breast Cancer Symposium, ASCO University, 2010. Wood, 2012, Phase I study of heat-deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies, J. Vasc. Interv. Radiol., 23, 248, 10.1016/j.jvir.2011.10.018 Park, 2002, Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery, Clin. Cancer Res., 8, 1172 Gao, 2009, Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes, Int. J. Pharm., 374, 145, 10.1016/j.ijpharm.2009.03.018 Matsumura, 2004, Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer, Ann. Oncol., 15, 517, 10.1093/annonc/mdh092 Suzuki, 2008, Effective anti-tumor activity of oxaliplatin encapsulated in transferrin–PEG-liposome, Int. J. Pharm., 346, 143, 10.1016/j.ijpharm.2007.06.010 van der Meel, 2013, Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status, Adv. Drug Deliv. Rev., 65, 1284, 10.1016/j.addr.2013.08.012 Wang, 2009, Advances of cancer therapy by nanotechnology, Cancer Res. Treat., 41, 1, 10.4143/crt.2009.41.1.1 Yu, 2012, Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy, Theranostics, 2, 3, 10.7150/thno.3463 Podesta, 2009, Engineering cationic liposome: siRNA complexes for in vitro and in vivo delivery, 343, 10.1016/S0076-6879(09)64017-9 Haussecker, 2012, The business of RNAi therapeutics in 2012, Mol. Ther. Nucleic Acids, 1, e8, 10.1038/mtna.2011.9 Hughes, 2010, Liposomal siRNA delivery, 445 Zhou, 2013, Nanoparticle-based delivery of RNAi therapeutics: progress and challenges, Pharmaceuticals, 6, 85, 10.3390/ph6010085 Aleku, 2008, Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression, Cancer Res., 68, 9788, 10.1158/0008-5472.CAN-08-2428 Burnett, 2011, Current progress of siRNA/shRNA therapeutics in clinical trials, Biotechnol. J., 6, 1130, 10.1002/biot.201100054 Rettig, 2012, Progress toward in vivo use of siRNAs-II, Mol. Ther., 20, 483, 10.1038/mt.2011.263 Senzer, 2013, Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors, Mol. Ther., 21, 1096, 10.1038/mt.2013.32 Nagai, 2011, Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis, Proc. Natl. Acad. Sci. USA, 108, E1330, 10.1073/pnas.1110013108 Sinha, 2005, Carbon nanotubes for biomedical applications, IEEE Trans. NanoBiosci., 4, 180, 10.1109/TNB.2005.850478 Vardharajula, 2012, Functionalized carbon nanotubes: biomedical applications, Int. J. Nanomed., 7, 5361 Ali-Boucetta, 2011, Cellular uptake and cytotoxic impact of chemically functionalized and polymer-coated carbon nanotubes, Small, 7, 3230, 10.1002/smll.201101004 Bianco, 2011, Making carbon nanotubes biocompatible and biodegradable, Chem. Commun., 47, 10182, 10.1039/c1cc13011k Ajima, 2008, Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns, ACS Nano, 2, 2057, 10.1021/nn800395t Hampel, 2008, Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth, Nanomedicine, 3, 175, 10.2217/17435889.3.2.175 Wu, 2009, Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity, ACS Nano, 3, 2740, 10.1021/nn9005686 Kam, 2006, Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway, Angew. Chem. Int. Ed., 45, 577, 10.1002/anie.200503389 Kostarelos, 2007, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type, Nat. Nano, 2, 108, 10.1038/nnano.2006.209 Fabbro, 2012, Targeting carbon nanotubes against cancer, Chem. Commun., 48, 3911, 10.1039/c2cc17995d Liu, 2007, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice, Nat. Nano, 2, 47, 10.1038/nnano.2006.170 Dhar, 2008, Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device, J. Am. Chem. Soc., 130, 11467, 10.1021/ja803036e McDevitt, 2007, Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes, J. Nucl. Med., 48, 1180, 10.2967/jnumed.106.039131 Heister, 2009, Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy, Carbon, 47, 2152, 10.1016/j.carbon.2009.03.057 Zhang, 2009, Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes, Biomaterials, 30, 6041, 10.1016/j.biomaterials.2009.07.025 Li, 2010, P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells, ACS Nano, 4, 1399, 10.1021/nn9011225 Liu, 2008, Drug delivery with carbon nanotubes for in vivo cancer treatment, Cancer Res., 68, 6652, 10.1158/0008-5472.CAN-08-1468 Liu, 2009, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy, Angew. Chem. Int. Ed., 48, 7668, 10.1002/anie.200902612 Feazell, 2007, Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design, J. Am. Chem. Soc., 129, 8438, 10.1021/ja073231f Arlt, 2010, Delivery of carboplatin by carbon-based nanocontainers mediates increased cancer cell death, Nanotechnology, 21, 335101, 10.1088/0957-4484/21/33/335101 Prakash, 2011, Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy, Adv. Drug Deliv. Rev., 63, 1340, 10.1016/j.addr.2011.06.013 Chaudhuri, 2010, Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma, Nanotechnology, 21, 025102, 10.1088/0957-4484/21/2/025102 Samori, 2010, Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers, Chem. Commun., 46, 1494, 10.1039/B923560D Sobhani, 2011, Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube, Int. J. Nanomed., 6, 705 Tripisciano, 2009, Single-wall carbon nanotubes based anticancer drug delivery system, Chem. Phys. Lett., 478, 200, 10.1016/j.cplett.2009.07.071 Adeli, 2013, Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube-polymer interactions, Chem. Soc. Rev., 42, 5231, 10.1039/c3cs35431h Liu, 2011, Carbon materials for drug delivery & cancer therapy, Mater. Today, 14, 316, 10.1016/S1369-7021(11)70161-4 Wong, 2013, Carbon nanotubes for delivery of small molecule drugs, Adv. Drug Deliv. Rev., 65, 1964, 10.1016/j.addr.2013.08.005 Zavaleta, 2008, Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes, Nano Lett., 8, 2800, 10.1021/nl801362a Bhirde, 2010, Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice, Nanomedicine, 5, 1535, 10.2217/nnm.10.90 Bhirde, 2009, Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery, ACS Nano, 3, 307, 10.1021/nn800551s Bianco, 2005, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol., 9, 674, 10.1016/j.cbpa.2005.10.005 Liu, 2009, Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery, Nano Res., 2, 85, 10.1007/s12274-009-9009-8 Wu, 2005, Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes, Angew. Chem. Int. Ed., 44, 6358, 10.1002/anie.200501613 Wang, 2011, Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes, Int. J. Nanomed., 6, 2641, 10.2147/IJN.S24167 Ji, 2012, Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system, J. Colloid Interface Sci., 365, 143, 10.1016/j.jcis.2011.09.013 Datir, 2012, Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin, Bioconjug. Chem., 23, 2201, 10.1021/bc300248t Ren, 2012, The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2, Biomaterials, 33, 3324, 10.1016/j.biomaterials.2012.01.025 Singh, 2013, Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells, J. Drug Target., 21, 581, 10.3109/1061186X.2013.778264 Panyam, 2003, Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv. Drug Deliv. Rev., 55, 329, 10.1016/S0169-409X(02)00228-4 Panyam, 2003, Polymer degradation and in vitro release of a model protein from poly(d,l-lactide-co-glycolide) nano- and microparticles, J. Control. Release, 92, 173, 10.1016/S0168-3659(03)00328-6 Torchilin, 2007, Micellar nanocarriers: pharmaceutical perspectives, Pharm. Res., 24, 1, 10.1007/s11095-006-9132-0 Kwon, 2003, Polymeric micelles for delivery of poorly water-soluble compounds, Crit. Rev. Ther. Drug Carrier Syst., 20, 357, 10.1615/CritRevTherDrugCarrierSyst.v20.i5.20 Tong, 2007, Anticancer polymeric nanomedicines, Polym. Rev., 47, 345, 10.1080/15583720701455079 Kwon, 1995, Block copolymer micelles as long-circulating drug vehicles, Adv. Drug Deliv. Rev., 16, 295, 10.1016/0169-409X(95)00031-2 Cabral, 2011, Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size, Nat. Nano, 6, 815, 10.1038/nnano.2011.166 Lu, 2013, Polymeric micelles and alternative nanosized delivery vehicles for poorly soluble drugs, Int. J. Pharmaceut., 453, 198, 10.1016/j.ijpharm.2012.08.042 Talelli, 2012, Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy, Curr. Opin. Solid State Mater. Sci., 16, 302, 10.1016/j.cossms.2012.10.003 Oerlemans, 2010, Polymeric micelles in anticancer therapy: targeting, imaging and triggered release, Pharm. Res., 27, 2569, 10.1007/s11095-010-0233-4 Rapoport, 2007, Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery, Prog. Polym. Sci., 32, 962, 10.1016/j.progpolymsci.2007.05.009 Chen, 2009, PH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release, Biomacromolecules, 10, 1727, 10.1021/bm900074d Du, 2010, Aqueous solution properties of the acid-labile thermoresponsive poly(meth)acrylamides with pendent cyclic orthoester groups, Macromolecules, 43, 2474, 10.1021/ma902227g Wang, 2009, High-frequency ultrasound-responsive block copolymer micelle, Langmuir, 25, 13201, 10.1021/la9018794 Alvarez-Lorenzo, 2009, Light-sensitive intelligent drug delivery systems, Photochem. Photobiol., 85, 848, 10.1111/j.1751-1097.2008.00530.x Talelli, 2010, Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin, Biomaterials, 31, 7797, 10.1016/j.biomaterials.2010.07.005 Bae, 2005, Polymer assemblies: intelligent block copolymers micelles for the programmed delivery of drugs and genes, 491 Valle, 2011, A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction, Invest. New Drugs, 29, 1029, 10.1007/s10637-010-9399-1 Torchilin, 2003, Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs, Proc. Natl. Acad. Sci. USA, 100, 6039, 10.1073/pnas.0931428100 Han, 2009, 9-NC-loaded folate-conjugated polymer micelles as tumor targeted drug delivery system: preparation and evaluation in vitro, Int. J. Pharm., 372, 125, 10.1016/j.ijpharm.2008.12.035 Nasongkla, 2004, CRGD-functionalized polymer micelles for targeted doxorubicin delivery, Angew. Chem. Int. Ed., 43, 6323, 10.1002/anie.200460800 Bae, 2005, Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery, Mol. BioSyst., 1, 242, 10.1039/b500266d Wu, 2010, Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy, Bioconjug. Chem., 21, 208, 10.1021/bc9005283 Gong, 2012, Polymeric micelles drug delivery system in oncology, J. Control. Release, 159, 312, 10.1016/j.jconrel.2011.12.012 Lu, 2013, Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs, Int. J. Pharm., 453, 198, 10.1016/j.ijpharm.2012.08.042 Lee, 2008, Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer, Breast Cancer Res. Treat., 108, 241, 10.1007/s10549-007-9591-y Kim, 2007, Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer, Ann. Oncol., 18, 2009, 10.1093/annonc/mdm374 Lee, 2011, Development of docetaxel-loaded intravenous formulation, Nanoxel-PM™ using polymer-based delivery system, J. Control. Release, 155, 262, 10.1016/j.jconrel.2011.06.012 Matsumura, 2004, Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin, Br. J. Cancer, 91, 1775, 10.1038/sj.bjc.6602204 Kato, 2012, Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer, Invest. New Drugs, 30, 1621, 10.1007/s10637-011-9709-2 Hamaguchi, 2007, A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation, Br. J. Cancer, 97, 170, 10.1038/sj.bjc.6603855 Plummer, 2011, A phase I clinical study of cisplatin-incorporated polymeric micelles (NC-6004) in patients with solid tumours, Br. J. Cancer, 104, 593, 10.1038/bjc.2011.6 Hamaguchi, 2010, Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors, Clin. Cancer Res., 16, 5058, 10.1158/1078-0432.CCR-10-0387 Nanjwade, 2009, Dendrimers: emerging polymers for drug-delivery systems, Eur. J. Pharm. Sci., 38, 185, 10.1016/j.ejps.2009.07.008 Cheng, 2008, Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery, Front. Biosci., 13, 1447, 10.2741/2774 Wolinsky, 2008, Therapeutic and diagnostic applications of dendrimers for cancer treatment, Adv. Drug Deliv. Rev., 60, 1037, 10.1016/j.addr.2008.02.012 Khan, 2005, In vivo biodistribution of dendrimers and dendrimer nanocomposites – implications for cancer imaging and therapy, Technol. Cancer Res. Treat., 4, 603, 10.1177/153303460500400604 Lee, 2005, Designing dendrimers for biological applications, Nat. Biotechnol., 23, 1517, 10.1038/nbt1171 Svenson, 2009, Dendrimers as versatile platform in drug delivery applications, Eur. J. Pharm. Biopharm., 71, 445, 10.1016/j.ejpb.2008.09.023 Kojima, 2000, Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs, Bioconjug. Chem., 11, 910, 10.1021/bc0000583 Morgan, 2003, Dendritic molecular capsules for hydrophobic compounds, J. Am. Chem. Soc., 125, 15485, 10.1021/ja0347383 Morgan, 2006, Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro, Cancer Res., 66, 11913, 10.1158/0008-5472.CAN-06-2066 Malik, 1999, Dendrimer-platinate: a novel approach to cancer chemotherapy, Anticancer Drugs, 10, 767, 10.1097/00001813-199909000-00010 Dhanikula, 2007, Influence of molecular architecture of polyether-co-polyester dendrimers on the encapsulation and release of methotrexate, Biomaterials, 28, 3140, 10.1016/j.biomaterials.2007.03.012 Gurdag, 2006, Activity of dendrimer–methotrexate conjugates on methotrexate-sensitive and -resistant cell lines, Bioconjug. Chem., 17, 275, 10.1021/bc0501855 Khandare, 2006, Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel, Bioconjug. Chem., 17, 1464, 10.1021/bc060240p Lim, 2007, Synthesis of water-soluble dendrimers based on melamine bearing 16 paclitaxel groups, Org. Lett., 10, 201, 10.1021/ol7024907 Padilla De Jesús, 2002, Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation, Bioconjug. Chem., 13, 453, 10.1021/bc010103m Wang, 2013, Encapsulation of curcumin within poly(amidoamine) dendrimers for delivery to cancer cells, J. Mater. Sci. – Mater. Med., 24, 2137, 10.1007/s10856-013-4969-3 Ly, 2013, Pegylated dendrimer and its effect in fluorouracil loading and release for enhancing antitumor activity, J. Biomed. Nanotechnol., 9, 213, 10.1166/jbn.2013.1479 Shukla, 2006, HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb, Bioconjug. Chem., 17, 1109, 10.1021/bc050348p Patri, 2004, Synthesis and in vitro testing of J591 antibody–dendrimer conjugates for targeted prostate cancer therapy, Bioconjug. Chem., 15, 1174, 10.1021/bc0499127 Thomas, 2004, In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles, Biomacromolecules, 5, 2269, 10.1021/bm049704h Wu, 2006, Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates, Mol. Cancer Ther., 5, 52, 10.1158/1535-7163.MCT-05-0325 Shukla, 2005, Tumor angiogenic vasculature targeting with PAMAM dendrimer-RGD conjugates, Chem. Commun., 14, 5739, 10.1039/b507350b Dijkgraaf, 2007, Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes, Org. Biomol. Chem., 5, 935, 10.1039/b615940k Zhang, 2011, RGD-modified PEG-PAMAM-DOX conjugates: in vitro and in vivo studies for glioma, Eur. J. Pharm. Biopharm., 79, 232, 10.1016/j.ejpb.2011.03.025 Singh, 2008, Folate and folate–PEG–PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice, Bioconjug. Chem., 19, 2239, 10.1021/bc800125u Kono, 1999, Design of dendritic macromolecules containing folate or methotrexate residues, Bioconjug. Chem., 10, 1115, 10.1021/bc990082k Quintana, 2002, Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor, Pharm. Res., 19, 1310, 10.1023/A:1020398624602 Zhang, 2013, Folic acid-modified dendrimer-DOX conjugates for targeting cancer chemotherapy, J. Control. Release, 172, 115, 10.1016/j.jconrel.2013.08.115 Malik, 2000, Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo, J. Control. Release, 65, 133, 10.1016/S0168-3659(99)00246-1 Duncan, 2005, Dendrimer biocompatibility and toxicity, Adv. Drug Deliv. Rev., 57, 2215, 10.1016/j.addr.2005.09.019 van der Poll, 2010, Design, synthesis, and biological evaluation of a robust, biodegradable dendrimer, Bioconjug. Chem., 21, 764, 10.1021/bc900553n Lim, 2008, The role of the size and number of polyethylene glycol chains in the biodistribution and tumor localization of triazine dendrimers, Mol. Pharm., 5, 540, 10.1021/mp8000292 Calderón, 2010, Functional dendritic polymer architectures as stimuli-responsive nanocarriers, Biochimie, 92, 1242, 10.1016/j.biochi.2010.02.017 Calderón, 2011, Development of efficient acid cleavable multifunctional prodrugs derived from dendritic polyglycerol with a poly(ethylene glycol) shell, J. Control. Release, 151, 295, 10.1016/j.jconrel.2011.01.017 Ke, 2008, Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system, J. Pharm. Sci., 97, 2208, 10.1002/jps.21155 Wang, 2012, Reducing cytotoxicity while improving anti-cancer drug loading capacity of polypropylenimine dendrimers by surface acetylation, Acta Biomater., 8, 4304, 10.1016/j.actbio.2012.07.031 Abdel-Rahman, 2013, Thermoresponsive dendrimers based on oligoethylene glycols: design, synthesis and cytotoxic activity against MCF-7 breast cancer cells, Eur. J. Med. Chem., 69, 848, 10.1016/j.ejmech.2013.09.019 Hillaireau, 2009, Nanocarriers’ entry into the cell: relevance to drug delivery, Cell. Mol. Life Sci., 66, 2873, 10.1007/s00018-009-0053-z Park, 2006, Heparin–deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity, J. Control. Release, 114, 300, 10.1016/j.jconrel.2006.05.017 Ulbrich, 2004, Polymeric anticancer drugs with pH-controlled activation, Adv. Drug Deliv. Rev., 56, 1023, 10.1016/j.addr.2003.10.040 Hu, 2010, Nanoparticle-assisted combination therapies for effective cancer treatment, Ther. Deliv., 1, 323, 10.4155/tde.10.13 Liu, 2008, Polysaccharides-based nanoparticles as drug delivery systems, Adv. Drug Deliv. Rev., 60, 1650, 10.1016/j.addr.2008.09.001 Herrero, 2012, Polymer-based oral peptide nanomedicines, Ther. Deliv., 3, 657, 10.4155/tde.12.40 Miele, 2009, Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer, Int. J. Nanomed., 4, 99 Elsadek, 2012, Impact of albumin on drug delivery – new applications on the horizon, J. Control. Release, 157, 4, 10.1016/j.jconrel.2011.09.069 Iwamoto, 2013, Clinical application of drug delivery systems in cancer chemotherapy: review of the efficacy and side effects of approved drugs, Biol. Pharm. Bull., 36, 715, 10.1248/bpb.b12-01102 FDA Approval for Paclitaxel Albumin-stabilized Nanoparticle Formulation, National Cancer Institute (National Institutes of Health), 2013. Satouchi, 2013, Efficacy and safety of weekly nab-paclitaxel plus carboplatin in patients with advanced non-small cell lung cancer, Lung Cancer, 81, 97, 10.1016/j.lungcan.2013.02.020 Von Hoff, 2013, Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine, N. Engl. J. Med., 369, 1691, 10.1056/NEJMoa1304369 Kottschade, 2011, A phase II trial of nab-paclitaxel (ABI-007) and carboplatin in patients with unresectable stage IV melanoma: a North Central Cancer Treatment Group Study, N057E(1), Cancer, 117, 1704, 10.1002/cncr.25659 P. Merle, S.S. Ahmed, F. Habersetzer, A. Abergel, J. Taieb, L. Bonyhay, D. Costantini, J. Dufour-Lamartinie, C. Trepo, Phase 1 study of intra-arterial hepatic (IAH) delivery of doxorubicin-transdrug (DT) for patients with advanced hepatocellular carcinoma (HCC), in: 2006 ASCO Annual Meeting Proceedings, American Society of Clinical Oncology, 2006 (J. Clin. Oncol.). Kattan, 1992, Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles, Invest. New Drugs, 10, 191, 10.1007/BF00877245 Zhou, 2009, A randomized multicenter phase II clinical trial of mitoxantrone-loaded nanoparticles in the treatment of 108 patients with unresected hepatocellular carcinoma, Nanomed. Nanotechnol. Biol. Med., 5, 419, 10.1016/j.nano.2009.01.009 Svenson, 2011, Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101, J. Control. Release, 153, 49, 10.1016/j.jconrel.2011.03.007 R.F. Service, Nanotechnology, 2010, Nanoparticle Trojan horses gallop from the lab into the clinic, Sci. Transl. Med., 330, 314 Hrkach, 2012, Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile, Sci. Transl. Med., 4, 3003651, 10.1126/scitranslmed.3003651 Rizzo, 2013, Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications, Curr. Opin. Biotechnol., 24, 1159, 10.1016/j.copbio.2013.02.020 Fu, 2009, Nanoparticle albumin-bound (NAB) technology is a promising method for anti-cancer drug delivery, Recent Pat. Anticancer Drug Discov., 4, 262, 10.2174/157489209789206869 Hawkins, 2008, Protein nanoparticles as drug carriers in clinical medicine, Adv. Drug Deliv. Rev., 60, 876, 10.1016/j.addr.2007.08.044 Gonzalez-Angulo, 2013, Weekly nab-Rapamycin in patients with advanced nonhematologic malignancies: final results of a phase I trial, Clin. Cancer Res., 19, 5474, 10.1158/1078-0432.CCR-12-3110 Davis, 2009, The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic, Mol. Pharm., 6, 659, 10.1021/mp900015y Davis, 2010, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles, Nature, 464, 1067, 10.1038/nature08956 Heidel, 2007, Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA, Proc. Natl. Acad. Sci. USA, 104, 5715, 10.1073/pnas.0701458104 Bartlett, 2008, Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles, Biotechnol. Bioeng., 99, 975, 10.1002/bit.21668 Mousa, 2011, Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications, Cancers, 3, 2888, 10.3390/cancers3032888 Vauthier, 2003, Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles, J. Control. Release, 93, 151, 10.1016/j.jconrel.2003.08.005 Feng, 2004, Nanoparticles of biodegradable polymers for new-concept chemotherapy, Expert Rev. Med. Devices, 1, 115, 10.1586/17434440.1.1.115 Langer, 1976, Polymers for the sustained release of proteins and other macromolecules, Nature, 263, 797, 10.1038/263797a0 Couvreur, 1979, Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum, J. Pharm. Sci., 68, 1521, 10.1002/jps.2600681215 Brigger, 2002, Nanoparticles in cancer therapy and diagnosis, Adv. Drug Deliv. Rev., 54, 631, 10.1016/S0169-409X(02)00044-3 Barraud, 2005, Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo, J. Hepatol., 42, 736, 10.1016/j.jhep.2004.12.035 Mitra, 2001, Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier, J. Control. Release, 74, 317, 10.1016/S0168-3659(01)00342-X Machida, 2003, Efficacy of nanoparticles containing irinotecan prepared using poly(dl-lactic acid) and poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) against M5076 tumour in the early liver metastatic stage, STP Pharm. Sci., 13, 225 Otsuka, 2003, PEGylated nanoparticles for biological and pharmaceutical applications, Adv. Drug Deliv. Rev., 55, 403, 10.1016/S0169-409X(02)00226-0 Gref, 1994, Biodegradable long-circulating polymeric nanospheres, Science, 263, 1600, 10.1126/science.8128245 Langer, 1999, Biomaterials in drug delivery and tissue engineering: one laboratory’s experience, Acc. Chem. Res., 33, 94, 10.1021/ar9800993 Soppimath, 2001, Biodegradable polymeric nanoparticles as drug delivery devices, J. Control. Release, 70, 1, 10.1016/S0168-3659(00)00339-4 Kumar, 2002, Pharmaceutical polymeric controlled drug delivery systems, 45 Feng, 2003, Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases, Chem. Eng. Sci., 58, 4087, 10.1016/S0009-2509(03)00234-3 Tang, 2010, Recent progress in nanotechnology for cancer therapy, Chin. J. Cancer, 29, 775, 10.5732/cjc.010.10075 Web of Knowledge_Literature Search, Tomson Reuters. Wang, 2010, Targeting nanoparticles to cancer, Pharmacol. Res., 62, 90, 10.1016/j.phrs.2010.03.005 Kim, 2008, Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice, J. Control. Release, 127, 41, 10.1016/j.jconrel.2007.12.014 Mattheolabakis, 2009, In vivo investigation of tolerance and antitumor activity of cisplatin-loaded PLGA-mPEG nanoparticles, Eur. J. Pharm. Biopharm., 71, 190, 10.1016/j.ejpb.2008.09.011 Avgoustakis, 2002, PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties, J. Control. Release, 79, 123, 10.1016/S0168-3659(01)00530-2 Gryparis, 2007, Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells, Eur. J. Pharm. Biopharm., 67, 1, 10.1016/j.ejpb.2006.12.017 Moreno, 2010, Pharmacodynamics of cisplatin-loaded PLGA nanoparticles administered to tumor-bearing mice, Eur. J. Pharm. Biopharm., 74, 265, 10.1016/j.ejpb.2009.10.005 Ding, 2011, Cisplatin-loaded gelatin-poly(acrylic acid) nanoparticles: synthesis, antitumor efficiency in vivo and penetration in tumors, Eur. J. Pharm. Biopharm., 79, 142, 10.1016/j.ejpb.2011.01.008 Park, 2009, PEGylated PLGA nanoparticles for the improved delivery of doxorubicin, Nanomed. Nanotechnol. Biol. Med., 5, 410, 10.1016/j.nano.2009.02.002 Gelperina, 2010, Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters, Eur. J. Pharm. Biopharm., 74, 157, 10.1016/j.ejpb.2009.09.003 Wohlfart, 2011, Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers, PLoS ONE, 6, e19121, 10.1371/journal.pone.0019121 Danhier, 2009, Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation, J. Control. Release, 133, 11, 10.1016/j.jconrel.2008.09.086 Jin, 2009, Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells, Pharm. Res., 26, 1776, 10.1007/s11095-009-9889-z Parveen, 2011, Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery, Eur. J. Pharmacol., 670, 372, 10.1016/j.ejphar.2011.09.023 Oh, 2010, Paclitaxel-loaded pluronic nanoparticles formed by a temperature-induced phase transition for cancer therapy, J. Control. Release, 148, 344, 10.1016/j.jconrel.2010.08.021 Zhu, 2010, Paclitaxel-loaded poly(N-vinylpyrrolidone)-b-poly(ε-caprolactone) nanoparticles: preparation and antitumor activity in vivo, J. Control. Release, 142, 438, 10.1016/j.jconrel.2009.11.002 Anand, 2010, Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo, Biochem. Pharmacol., 79, 330, 10.1016/j.bcp.2009.09.003 Mohanty, 2010, The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation, Biomaterials, 31, 6597, 10.1016/j.biomaterials.2010.04.062 Duan, 2010, Synthesis and in vitro/in vivo anti-cancer evaluation of curcumin-loaded chitosan/poly(butyl cyanoacrylate) nanoparticles, Int. J. Pharm., 400, 211, 10.1016/j.ijpharm.2010.08.033 Bernardi, 2009, Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model, Cancer Lett., 281, 53, 10.1016/j.canlet.2009.02.018 Zhang, 2008, Preparation of chitosan-polyaspartic acid-5-fluorouracil nanoparticles and its anti-carcinoma effect on tumor growth in nude mice, World J. Gastroenterol., 14, 3554, 10.3748/wjg.14.3554 Morrow, 2007, Recent advances in basic and clinical nanomedicine, Med. Clin. North Am., 91, 805, 10.1016/j.mcna.2007.05.009 Kim, 2008, Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy, Biomaterials, 29, 1920, 10.1016/j.biomaterials.2007.12.038 Hu, 2010, Endostar-loaded PEG-PLGA nanoparticles: in vitro and in vivo evaluation, Int. J. Nanomed., 5, 1039, 10.2147/IJN.S14753 Jain, 2010, Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer, Nanomed. Nanotechnol. Biol. Med., 6, 179, 10.1016/j.nano.2009.03.002 Shaikh, 2009, Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer, Eur. J. Pharm. Sci., 37, 223, 10.1016/j.ejps.2009.02.019 Kalaria, 2009, Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats, Pharm. Res., 26, 492, 10.1007/s11095-008-9763-4 Bhardwaj, 2009, PLGA nanoparticles stabilized with cationic surfactant: safety studies and application in oral delivery of paclitaxel to treat chemical-induced breast cancer in rat, Pharm. Res., 26, 2495, 10.1007/s11095-009-9965-4 Zhao, 2010, Enhanced oral bioavailability of paclitaxel formulated in vitamin E-TPGS emulsified nanoparticles of biodegradable polymers: in vitro and in vivo studies, J. Pharm. Sci., 99, 3552, 10.1002/jps.22113 Agüeros, 2010, Increased oral bioavailability of paclitaxel by its encapsulation through complex formation with cyclodextrins in poly(anhydride) nanoparticles, J. Control. Release, 145, 2, 10.1016/j.jconrel.2010.03.012 Zabaleta, 2012, Oral administration of paclitaxel with pegylated poly(anhydride) nanoparticles: permeability and pharmacokinetic study, Eur. J. Pharm. Biopharm., 81, 514, 10.1016/j.ejpb.2012.04.001 Feng, 2009, Poly(lactide)–vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of docetaxel, Biomaterials, 30, 3297, 10.1016/j.biomaterials.2009.02.045 Jain, 2011, The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen, Biomaterials, 32, 503, 10.1016/j.biomaterials.2010.09.037 Lammers, 2007, Effect of radiotherapy and hyperthermia on the tumor accumulation of HPMA copolymer-based drug delivery systems, J. Control. Release, 117, 333, 10.1016/j.jconrel.2006.10.032 Lammers, 2010, Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy, Nano Today, 5, 197, 10.1016/j.nantod.2010.05.001 Park, 2009, Multifunctional nanoparticles for combined doxorubicin and photothermal treatments, ACS Nano, 3, 2919, 10.1021/nn900215k Steichen, 2013, A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics, Eur. J. Pharm. Sci., 48, 416, 10.1016/j.ejps.2012.12.006 Sahoo, 2004, Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer, Int. J. Cancer, 112, 335, 10.1002/ijc.20405 Wang, 2011, A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model, ACS Nano, 5, 6184, 10.1021/nn200739q Frei, 2011, Albumin binding ligands and albumin conjugate uptake by cancer cells, Diabetol. Metab. Syndr., 3, 11, 10.1186/1758-5996-3-11 Desai, 2008, Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status, Anticancer Drugs, 19, 899, 10.1097/CAD.0b013e32830f9046 O. D’Cruz, M. Piacente, V. Trieu, C. Tao, N. Desai, ABI-013: a novel nanoparticle albumin-bound (nab) docetaxel analog with superior antitumor activity over docetaxel, in: AACR 101st Annual Meeting 2010, Cancer Research, American Association for Cancer Research, Washington, DC, 2010. O. D’Cruz, M. Piacente, V. Trieu, C. Tao, N. Desai, Cardiovascular and CNS safety profile of ABI-013, a novel nanoparticle albumin-bound (nab) analog of docetaxel in: AACR 101st Annual Meeting 2010, Cancer Research, American Association for Cancer Research, Washington, DC, 2010. Kim, 2011, Preparation and characterization of Apo2L/TNF-related apoptosis-inducing ligand–loaded human serum albumin nanoparticles with improved stability and tumor distribution, J. Pharm. Sci., 100, 482, 10.1002/jps.22298 Choi, 2012, Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer, Colloids Surf., B, 99, 82, 10.1016/j.colsurfb.2011.10.029 Choi, 2010, Self-assembled hyaluronic acid nanoparticles for active tumor targeting, Biomaterials, 31, 106, 10.1016/j.biomaterials.2009.09.030 Choi, 2011, PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo, Biomaterials, 32, 1880, 10.1016/j.biomaterials.2010.11.010 Choi, 2011, Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy, ACS Nano, 5, 8591, 10.1021/nn202070n Cho, 2011, Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) andPluronic® for tumor-targeted delivery of docetaxel, Biomaterials, 32, 7181, 10.1016/j.biomaterials.2011.06.028 Na, 2003, Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system, Eur. J. Pharm. Sci., 18, 165, 10.1016/S0928-0987(02)00257-9 Taheri, 2011, Targeted delivery of methotrexate to tumor cells using biotin functionalized methotrexate-human serum albumin conjugated nanoparticles, J. Biomed. Nanotechnol., 7, 743, 10.1166/jbn.2011.1340 Taheri, 2011, Use of biotin targeted methotrexate-human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy, Int. J. Nanomed., 6, 1863 Sudimack, 2000, Targeted drug delivery via the folate receptor, Adv. Drug Deliv. Rev., 41, 147, 10.1016/S0169-409X(99)00062-9 Hilgenbrink, 2005, Folate receptor-mediated drug targeting: from therapeutics to diagnostics, J. Pharm. Sci., 94, 2135, 10.1002/jps.20457 Haley, 2008, Nanoparticles for drug delivery in cancer treatment, Urol. Oncol.: Semin. Orig. Invest., 26, 57, 10.1016/j.urolonc.2007.03.015 Patil, 2009, Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery, Biomaterials, 30, 859, 10.1016/j.biomaterials.2008.09.056 Parveen, 2010, Evaluation of cytotoxicity and mechanism of apoptosis of doxorubicin using folate-decorated chitosan nanoparticles for targeted delivery to retinoblastoma, Cancer Nano, 1, 47, 10.1007/s12645-010-0006-0 Zhang, 2010, Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery, Eur. J. Pharm. Biopharm., 76, 10, 10.1016/j.ejpb.2010.05.005 Nukolova, 2011, Folate-decorated nanogels for targeted therapy of ovarian cancer, Biomaterials, 32, 5417, 10.1016/j.biomaterials.2011.04.006 Liang, 2011, Improved therapeutic effect of folate-decorated PLGA–PEG nanoparticles for endometrial carcinoma, Bioorg. Med. Chem., 19, 4057, 10.1016/j.bmc.2011.05.016 Ebrahimnejad, 2011, Characterization, blood profile and biodistribution properties of surface modified PLGA nanoparticles of SN-38, Int. J. Pharm., 406, 122, 10.1016/j.ijpharm.2010.12.022 Ponka, 1999, The transferrin receptor: role in health and disease, Int. J. Biochem. Cell Biol., 31, 1111, 10.1016/S1357-2725(99)00070-9 Widera, 2003, Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery, Adv. Drug Deliv. Rev., 55, 1439, 10.1016/j.addr.2003.07.004 Li, 2002, Transferrin/transferrin receptor-mediated drug delivery, Med. Res. Rev., 22, 225, 10.1002/med.10008 Hong, 2010, Novel anti-tumor strategy: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles, J. Control. Release, 141, 22, 10.1016/j.jconrel.2009.08.024 Visser, 2004, Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells in vitro, J. Drug Target., 12, 145, 10.1080/10611860410001701706 Gan, 2010, Transferrin-conjugated nanoparticles of poly(lactide)-d-α-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier, Biomaterials, 31, 7748, 10.1016/j.biomaterials.2010.06.053 Jain, 2011, Transferrin-appended PEGylated nanoparticles for temozolomide delivery to brain: in vitro characterisation, J. Microencapsul., 28, 21, 10.3109/02652048.2010.522257 Gu, 2007, Targeted nanoparticles for cancer therapy, Nano Today, 2, 14, 10.1016/S1748-0132(07)70083-X Dhar, 2008, Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles, Proc. Natl. Acad. Sci. USA, 105, 17356, 10.1073/pnas.0809154105 Farokhzad, 2004, Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells, Cancer Res., 64, 7668, 10.1158/0008-5472.CAN-04-2550 Guo, 2011, Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery, Biomaterials, 32, 8010, 10.1016/j.biomaterials.2011.07.004 Acharya, 2009, Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy, Biomaterials, 30, 5737, 10.1016/j.biomaterials.2009.07.008 Slamon, 1989, Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer, Science, 244, 707, 10.1126/science.2470152 Nahta, 2006, Herceptin: mechanisms of action and resistance, Cancer Lett., 232, 123, 10.1016/j.canlet.2005.01.041 Cirstoiu-Hapca, 2009, Nanomedicines for active targeting: physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells, Eur. J. Pharm. Sci., 38, 230, 10.1016/j.ejps.2009.07.006 Cirstoiu-Hapca, 2010, Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: therapeutic efficacy and biodistribution in mice, J. Control. Release, 144, 324, 10.1016/j.jconrel.2010.02.026 Taheri, 2012, Trastuzumab decorated methotrexate–human serum albumin conjugated nanoparticles for targeted delivery to HER2 positive tumor cells, Eur. J. Pharm. Sci., 47, 331, 10.1016/j.ejps.2012.06.016 Chen, 2008, Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy, J. Control. Release, 128, 209, 10.1016/j.jconrel.2008.03.010 Kos, 2009, Inactivation of harmful tumour-associated proteolysis by nanoparticulate system, Int. J. Pharm., 381, 106, 10.1016/j.ijpharm.2009.04.037 Brooks, 1994, Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels, Cell, 79, 1157, 10.1016/0092-8674(94)90007-8 Byrne, 2008, Active targeting schemes for nanoparticle systems in cancer therapeutics, Adv. Drug Deliv. Rev., 60, 1615, 10.1016/j.addr.2008.08.005 Wang, 2009, Design of a multifunctional PLGA nanoparticulate drug delivery system: evaluation of its physicochemical properties and anticancer activity to malignant cancer cells, Pharm. Res., 26, 1162, 10.1007/s11095-009-9837-y Danhier, 2009, Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel, J. Control. Release, 140, 166, 10.1016/j.jconrel.2009.08.011 Xin, 2011, Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma, Biomaterials, 32, 4293, 10.1016/j.biomaterials.2011.02.044 Yusuf-Makagiansar, 2001, Binding and internalization of an LFA-1-derived cyclic peptide by ICAM receptors on activated lymphocyte: a potential ligand for drug targeting to ICAM-1-expressing cells, Pharm. Res., 18, 329, 10.1023/A:1011007014510 Chittasupho, 2009, ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells, Eur. J. Pharm. Sci., 37, 141, 10.1016/j.ejps.2009.02.008 Vasir, 2007, Biodegradable nanoparticles for cytosolic delivery of therapeutics, Adv. Drug Deliv. Rev., 59, 718, 10.1016/j.addr.2007.06.003 Misra, 2010, Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy, Eur. J. Pharm. Sci., 39, 152, 10.1016/j.ejps.2009.11.010 Temming, 2005, RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature, Drug Resist. Updates, 8, 381, 10.1016/j.drup.2005.10.002 Garde, 2007, Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects, Anticancer Drugs, 18, 1189, 10.1097/CAD.0b013e3282a213ce Sugahara, 2009, Tissue-penetrating delivery of compounds and nanoparticles into tumors, Cancer Cell, 16, 510, 10.1016/j.ccr.2009.10.013 Yoncheva, 2011, Antiangiogenic anticancer strategy based on nanoparticulate systems, Expert Opin. Drug Deliv., 8, 1041, 10.1517/17425247.2011.585155 Karmali, 2009, Targeting of albumin-embedded paclitaxel nanoparticles to tumors, Nanomed. Nanotechnol. Biol. Med., 5, 73, 10.1016/j.nano.2008.07.007 Christian, 2003, Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels, J. Cell Biol., 163, 871, 10.1083/jcb.200304132 Winer, 2010, F3-targeted cisplatin-hydrogel nanoparticles as an effective therapeutic that targets both murine and human ovarian tumor endothelial cells in vivo, Cancer Res., 70, 8674, 10.1158/0008-5472.CAN-10-1917 Milane, 2011, Therapeutic efficacy and safety of paclitaxel/lonidamine loaded EGFR-targeted nanoparticles for the treatment of multi-drug resistant cancer, PLoS ONE, 6, 8, 10.1371/journal.pone.0024075 Kim, 2007, Strategies for silencing human disease using RNA interference, Nat. Rev. Genet., 8, 173, 10.1038/nrg2006 Castanotto, 2009, The promises and pitfalls of RNA-interference-based therapeutics, Nature, 457, 426, 10.1038/nature07758 Falamarzian, 2012, Polymeric micelles for siRNA delivery, J. Drug Del. Sci. Tech., 22, 43, 10.1016/S1773-2247(12)50004-3 Christie, 2012, Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection, ACS Nano, 6, 5174, 10.1021/nn300942b Guo, 2013, Amphiphilic polyallylamine based polymeric micelles for siRNA delivery to the gastrointestinal tract: in vitro investigations, Int. J. Pharm., 447, 150, 10.1016/j.ijpharm.2013.02.050 Liu, 2013, Polymeric-micelle-based nanomedicine for siRNA delivery, Part. Part. Syst. Charact., 30, 211, 10.1002/ppsc.201200061 Pittella, 2013, Polymeric micelles for siRNA delivery, 161 Muratovska, 2004, Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells, FEBS Lett., 558, 63, 10.1016/S0014-5793(03)01505-9 Meyer, 2009, Synthesis and biological evaluation of a bioresponsive and endosomolytic siRNA−polymer conjugate, Mol. Pharm., 6, 752, 10.1021/mp9000124 Dohmen, 2012, Defined folate-PEG-siRNA conjugates for receptor-specific gene silencing, Mol. Ther. Nucleic Acids, 31, 10 Gunasekaran, 2011, Conjugation of siRNA with comb-type PEG enhances serum stability and gene silencing efficiency, Macromol. Rapid Commun., 32, 654, 10.1002/marc.201000804 Huang, 2012, Preparation and characterization of polymeric nanoparticles for siRNA delivery to down-regulate the expressions of exogenous and endogenous target genes, Pharmazie, 67, 676 Wu, 2010, The investigation of polymer-siRNA nanoparticle for gene therapy of gastric cancer in vitro, Int. J. Nanomed., 5, 129, 10.2147/IJN.S8503 Gao, 2010, Progress in siRNA delivery using multifunctional nanoparticles, 53 Zhang, 2013, Ternary polymeric nanoparticles for oral siRNA delivery, Pharm. Res., 30, 1228, 10.1007/s11095-012-0961-8 Kulkarni, 2012, Pendant polymer:amino-β-cyclodextrin:siRNA guest: host nanoparticles as efficient vectors for gene silencing, J. Am. Chem. Soc., 134, 7596, 10.1021/ja300690j Yogasundaram, 2012, BSA nanoparticles for siRNA delivery: coating effects on nanoparticle properties, plasma protein adsorption, and in vitro siRNA delivery, Int. J. Biomater., 10.1155/2012/584060 Lee, 2012, Tumor-homing poly-siRNA/glycol chitosan self-cross-linked nanoparticles for systemic siRNA delivery in cancer treatment, Angew. Chem. Int. Ed., 51, 7203, 10.1002/anie.201201390 Yang, 2011, Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy, J. Control. Release, 156, 203, 10.1016/j.jconrel.2011.07.035 Luo, 2009, RNA interference of MBD1 in BxPC-3 human pancreatic cancer cells delivered by PLGA-poloxamer nanoparticles, Cancer Biol. Ther., 8, 594, 10.4161/cbt.8.7.7790 Parry, 2011, The roles of the methyl-CpG binding proteins in cancer, Genes Cancer, 2, 618, 10.1177/1947601911418499 Andersen, 2010, Surface functionalisation of PLGA nanoparticles for gene silencing, Biomaterials, 31, 5671, 10.1016/j.biomaterials.2010.03.069 Patil, 2010, The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance, Biomaterials, 31, 358, 10.1016/j.biomaterials.2009.09.048 Han, 2010, Targeted gene silencing using RGD-labeled chitosan nanoparticles, Clin. Cancer Res., 16, 3910, 10.1158/1078-0432.CCR-10-0005 Sirnaomics Inc. Bae, 2011, Nanomaterials for cancer therapy and imaging, Mol. Cells, 31, 295, 10.1007/s10059-011-0051-5 Lee, 2009, All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery, Angew. Chem. Int. Ed., 48, 4174, 10.1002/anie.200805998 Bae, 2011, Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging, Biomaterials, 32, 176, 10.1016/j.biomaterials.2010.09.039 van Vlerken, 2006, Multi-functional polymeric nanoparticles for tumour-targeted drug delivery, Expert Opin. Drug Deliv., 3, 205, 10.1517/17425247.3.2.205