Aircraft measurements of carbon dioxide and methane for the calibration of ground-based high-resolution Fourier Transform Spectrometers and a comparison to GOSAT data measured over Tsukuba and Moshiri

Atmospheric Measurement Techniques - Tập 5 Số 8 - Trang 2003-2012
T. Tanaka1,2, Yuki Miyamoto1,3, Isamu Morino1, Toshinobu Machida1, Tomoo Nagahama4, Yoshihiro Sawa5, Hidekazu Matsueda5, Debra Wunch6, S. Kawakami7, Osamu Uchino1
1National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
2now at: Japan Aerospace Exploration Agency Earth Observation Research Center, 2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan
3now at: Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka kita-ku, Okayama, 700-8530, Japan
4Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
5Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
6California Institute of Technology, Pasadena, CA, 91125-2100, USA
7Japan Aerospace Exploration Agency, Earth Observation Research Center, 2-1-1, Sengen, Tsukuba, Ibaraki 305-8505, Japan.

Tóm tắt

Abstract. Aircraft measurements of carbon dioxide and methane over Tsukuba (36.05° N, 140.12° E) (February 2010) and Moshiri (44.36° N, 142.26° E) (August 2009) were made to calibrate ground-based high-resolution Fourier Transform Spectrometers (g-b FTSs) and to compare with the Greenhouse gases Observing SATellite (GOSAT). The aircraft measurements over Tsukuba in February 2010 were successful in synchronizing with both the g-b FTS and GOSAT for the first time. Airborne in situ and flask-sampling instruments were mounted on the aircraft, and measurements were carried out between altitudes of 0.5 and 7 km to obtain vertical profiles of carbon dioxide (CO2), methane (CH4), and other gaseous species. By comparing the g-b FTS measurements with the airborne measurements, the column-averaged dry air mole fractions of CO2 (XCO2) and CH4 (XCH4) retrieved from the g-b FTS measurements at Tsukuba were biased low by 0.33 ± 0.11% for XCO2 and 0.69 ± 0.29% for XCH4. The g-b FTS values at Moshiri were biased low by 1.24% for XCO2 and 2.11% for XCH4. The GOSAT data show biases that are 3.1% ± 1.7% lower for XCO2 and 2.5% ± 0.8% lower for XCH4 than the aircraft measurements obtained over Tsukuba.

Từ khóa


Tài liệu tham khảo

Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Jost, M. L. H., Podolske, J. R., Webster, C. R., Herman, R. L., Scott, D. C., Flesch, G. J., Moyer, E. J., Elkins, J. W., Dutton, G. S., Hurst, D. F., Moore, F. L., Ray, E. A., Romashkin, P. A., and Strahan, S. E.: Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2O, J. Geophys. Res., 106, 32295–32314, 2001.

GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project – Carbon Dioxide. CD-ROM, NOAA ESRL, Boulder, Colorado, also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, last access: August 2011, Path: ccg/co2/GLOBALVIEW, 2006.

Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J., Sarmiento, J., Taguchi, S., Takahashi, T., and Yuen, C.-W.: Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models, Nature, 415, 626–630, https://doi.org/10.1038/415626a, 2001.

Inoue, H. Y. and Matsueda, H.: Measurements of atmospheric CO2 from a meteorological tower in Tsukuba, Japan, Tellus B, 53, 205–219, 2001.

Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring, Appl. Optics, 48, 6716–6733, 2009.

Luo, M., Cicerone, R. J., and Russell III, J. M..: Analysis of Halogen Occultation Experiment HF versus CH4 correlation plots: Chemistry and transport implications, J. Geophys. Res., 100, 13927–13937, 1995.

Machida, T., Matsueda, H., Sawa, Y., Nakagawa, Y., Hirotani, K., Kondo, N., Goto, K., Nakazawa, T., Ishikawa, K., and Ogawa, T.: Worldwide Measurements of Atmospheric CO2 and Other Trace Gas Species Using Commercial Airlines, J. Atmos. Ocean. Tech., 25, 1744–1754, https://doi.org/10.1175/2008JTECHA1082.1, 2008.

Mao, J. and Kawa, S. R.: Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight, App. Optics, 5, 914–927, https://doi.org/10.1029/2001JD000617, 2004.

Messerschmidt, J., Macatangay, R., Notholt, J., Petri, C., Warneke, T., and Weinzierl, C.: Side by side measurements of CO2 by ground-based Fourier transform spectrometry ({FTS}), Tellus B, 62, 749–758, https://doi.org/10.1111/j.1600-0889.2010.00491.x, 2010.

Messerschmidt, J., Geibel, M. C., Blumenstock, T., Chen, H., Deutscher, N. M., Engel, A., Feist, D. G., Gerbig, C., Gisi, M., Hase, F., Katrynski, K., Kolle, O., Lavric, J. V., Notholt, J., Palm, M., Ramonet, M., Rettinger, M., Schmidt, M., Sussmann, R., Toon, G. C., Truong, F., Warneke, T., Wennberg, P. O., Wunch, D., and Xueref-Remy, I.: Calibration of TCCON column-averaged CO2: the first aircraft campaign over European TCCON sites, Atmos. Chem. Phys., 11, 10765–10777, https://doi.org/10.5194/acp-11-10765-2011, 2011.

Morino, I., Uchino, O., Inoue, M., Yoshida, Y., Yokota, T., Wennberg, P. O., Toon, G. C., Wunch, D., Roehl, C. M., Notholt, J., Warneke, T., Messerschmidt, J., Griffith, D. W. T., Deutscher, N. M., Sherlock, V., Connor, B., Robinson, J., Sussmann, R., and Rettinger, M.: Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra, Atmos. Meas. Tech., 4, 1061–1076, https://doi.org/10.5194/amt-4-1061-2011, 2011.

O'Brien, D. M. and Rayner, P. J.: Global observations of the carbon budget 2. CO2 column from differential absorption of reflected sunlight in the 1.61 μm band of CO2, J. Geophys. Res., 5, 4354, https://doi.org/10.1029/2001JD000617, 2002.

Ohyama, H., Morino, I., Nagahama, T., Machida, T., Suto, H., Oguma, H., Sawa, Y., Matsueda, H., Sugimoto, N., Nakane, H., and Nakagawa, K.: Column-averaged volume mixing ratio of CO2 measured with ground-based Fourier transform spectrometer at Tsukuba, J. Geophys. Res., 114, D18303, https://doi.org/10.1029/2008JD011465, 2009.

Peterson, J., Tans, P., and Kitzis, D.: CO2 Round-robin Reference Gas Intercomparison, in: Report of the Ninth WMO Meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques, edited by: Francey, R., World Meteorological Organization, Geneva, Swizerland, 1999.

Rayner, P. J. and O'Brien, D. M.: The utility of remotely sensed CO2 concentration data in surface source inversions, Geophys. Res. Lett., 28, 175–178, 2001.

Rodgers, C. D. and Connor, B. J.: Intercomparison of remote sounding instruments, J. Geophys. Res., 108, 4116, https://doi.org/10.1029/2002JD002299, 2003.

Toon, G.: The JPL MkIV interferometer, Opt. Photon. News, 2, 19–21, 1991.

Uchino, O., Kikuchi, N., Sakai, T., Morino, I., Yoshida, Y., Nagai, T., Shimizu, A., Shibata, T., Yamazaki, A., Uchiyama, A., Kikuchi, N., Oshchepkov, S., Bril, A., and Yokota, T.: Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO2: a case study over Tsukuba, Atmos. Chem. Phys., 12, 3393–3404, https://doi.org/10.5194/acp-12-3393-2012, 2012.

Washenfelder, R. A., Wennberg, P. O., and Toon, G. C.: Tropospheric methane retrieved from ground-based near-IR solar absorption spectra, Geophys. Res. Lett., 30, 2226, https://doi.org/10.1029/2003GL017969, 2003.

Winderlich, J., Chen, H., Gerbig, C., Seifert, T., Kolle, O., Lavric, J. V., Kaiser, C., Höfer, A., and Heimann, M.: Continuous low-maintenance CO2/CH4/H2O measurements at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia, Atmos. Meas. Tech., 3, 1113–1128, https://doi.org/10.5194/amt-3-1113-2010, 2010.

WMO2011: WMO Greenhouse Gas Bulletin, NO. 7, available at http://www.wmo.int/pages/prog/arep/gaw/ghg/GHGbulletin.html (last access: March 2012), 2011.

Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens, B. B., Fischer, M. L., Uchino, O., Abshire, J. B., Bernath, P., Biraud, S. C., Blavier, J.-F. L., Boone, C., Bowman, K. P., Browell, E. V., Campos, T., Connor, B. J., Daube, B. C., Deutscher, N. M., Diao, M., Elkins, J. W., Gerbig, C., Gottlieb, E., Griffith, D. W. T., Hurst, D. F., Jiménez, R., Keppel-Aleks, G., Kort, E. A., Macatangay, R., Machida, T., Matsueda, H., Moore, F., Morino, I., Park, S., Robinson, J., Roehl, C. M., Sawa, Y., Sherlock, V., Sweeney, C., Tanaka, T., and Zondlo, M. A.: Calibration of the Total Carbon Column Observing Network using aircraft profile data, Atmos. Meas. Tech., 3, 1351–1362, https://doi.org/10.5194/amt-3-1351-2010, 2010.

Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The Total Carbon Column Observing Network (TCCON), Philos. T. Roy. Soc. A, 369, 2087–2112, https://doi.org/10.1098/rsta.2010.0240, 2011.

Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., and Maksyutov, S.: Global Concentrations of CO2 and CH4 Retrieved from {GOSAT}: First Preliminary Results, SOLA, 5, 160–163, https://doi.org/10.2151/sola.2009-041, 2009.

Yoshida, Y., Ota, Y., Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., Morino, I., and Yokota, T.: Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite, Atmos. Meas. Tech., 4, 717–734, https://doi.org/10.5194/amt-4-717-2011, 2011.

Zhou, L. X., Kitzis, D., and Tans, P. P.: Report of the fourth WMO Round-Robin reference gas intercomparison, 2002–2007, in: Report of the 14th WMO Meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques, edited by: Laurila, T., Helsinki, Finland, 40–43, 2009.