Role of Artificial Intelligence in the Internet of Things (IoT) cybersecurity
Tóm tắt
In recent years, the use of the Internet of Things (IoT) has increased exponentially, and cybersecurity concerns have increased along with it. On the cutting edge of cybersecurity is Artificial Intelligence (AI), which is used for the development of complex algorithms to protect networks and systems, including IoT systems. However, cyber-attackers have figured out how to exploit AI and have even begun to use adversarial AI in order to carry out cybersecurity attacks. This review paper compiles information from several other surveys and research papers regarding IoT, AI, and attacks with and against AI and explores the relationship between these three topics with the purpose of comprehensively presenting and summarizing relevant literature in these fields.
Tài liệu tham khảo
Evans D. The Internet of Things: how the next evolution of the internet is changing everything. Cisco Internet Business Solutions Group: Cisco; 2011.
Rouse M. What is IoT (Internet of Things) and how does it work? IoT Agenda, TechTarget. http://www.internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT. Accessed 11 Feb 2020.
Linthicum D. App nirvana: when the internet of things meets the API economy. https://techbeacon.com/app-dev-testing/app-nirvana-when-internet-things-meets-api-economy. Accessed 15 Nov 2019.
Lu Y, Xu LD. Internet of Things (IoT) cybersecurity research: a review of current research topics. IEEE Internet Things J. 2019;6(2):2103–15.
Vorakulpipat C, Rattanalerdnusorn E, Thaenkaew P, Hai HD. Recent challenges, trends, and concerns related to IoT security: aan evolutionary study. In: 2018 20th international conference on advanced communication technology (ICACT), Chuncheon-si Gangwon-do, Korea (South); 2018. p. 405–10.
Lakhani A. The role of artificial intelligence in IoT and OT security. https://www.csoonline.com/article/3317836/the-role-of-artificial-intelligence-in-iot-and-ot-security.html. Accessed 11 Feb 2020.
Pendse A. Transforming cybersecurity with AI and ML: view. https://ciso.economictimes.indiatimes.com/news/transforming-cybersecurity-with-ai-and-ml/67899197. Accessed 12 Feb 2020.
Meneghello F, Calore M, Zucchetto D, Polese M, Zanella A. IoT: internet of threats? A survey of practical security vulnerabilities in real IoT devices. IEEE Internet Things J. 2019;6(5):8182–201.
Roopak M, Yun Tian G, Chambers J. Models deep learning, for cyber security in IoT networks. In: IEEE 9th annual computing and communication workshop and conference (CCWC), Las Vegas, NV, USA. 2019;2019:0452–7.
Cañedo J, Skjellum A. Using machine learning to secure IoT systems. In: 2016 14th annual conference on privacy, security and trust (PST), Auckland; 2016. p. 219–22, https://doi.org/10.1109/PST.2016.7906930.
Farivar F, Haghighi MS, Jolfaei A, Alazab M. Artificial intelligence for detection, estimation, and compensation of malicious attacks in nonlinear cyber-physical systems and industrial IoT. IEEE Trans Ind Inf. 2020;16(4):2716–25. https://doi.org/10.1109/TII.2019.2956474.
Wang S, Qiao Z. Robust pervasive detection for adversarial samples of artificial intelligence in IoT environments. IEEE Access. 2019;7:88693–704. https://doi.org/10.1109/ACCESS.2019.2919695.
Radanliev P, De Roure D, Van Kleek M, Santos O, Ani U. Artificial intelligence in cyber physical systems. AI & society. 2020; p. 1–14.
Radanliev P, De Roure D, Page K, Nurse JR, Mantilla Montalvo R, Santos O, Maddox LT, Burnap P. Cyber risk at the edge: current and future trends on cyber risk analytics and artificial intelligence in the industrial internet of things and industry 4.0 supply chains. Cybersecurity. 2020;3:1–21.
Radanliev P, De Roure DC, Nurse JR, Montalvo RM, Cannady S, Santos O, Burnap P, Maple C. Future developments in standardisation of cyber risk in the Internet of Things (IoT). SN Appl Sci. 2020;2(2):169.
Woo S. The right security for IoT: physical attacks and how to counter them. In: Minj VP, editor. Profit From IoT. http://www.iot.electronicsforu.com/headlines/the-right-security-for-iot-physical-attacks-and-how-to-counter-them/. Accessed 13 June 2019.
Akram H, Dimitri K, Mohammed M. A comprehensive iot attacks survey based on a building-blocked reference mode. Int J Adv Comput Sci Appl. 2018. https://doi.org/10.14569/IJACSA.2018.090349.
Herberger C. DDoS fire & forget: PDoS—a permanent denial of service. Radware Blog, Radware Ltd. http://www.blog.radware.com/security/2015/10/ddos-fire-forget-pdos-a-permanent-denial-of-service/. Accessed 12 Sept 2016.
Cekerevac Z, Dvorak Z, Prigoda L, Čekerevac P. Internet of things and the man-in-the-middle attacks–security and economic risks. Mest J. 2017;5:15–25. https://doi.org/10.12709/mest.05.05.02.03.
Melamed T. An active man-in-the-middle attack on bluetooth smart devices. WIT Press, International Journal of Safety and Security Engineering. http://www.witpress.com/elibrary/sse-volumes/8/2/2120. Accessed 1 Feb 2018.
Mode G, Calyam P, Hoque K. False data injection attacks in Internet of Things and deep learning enabled predictive analytics; 2019.
De Donno M, Dragoni N, Giaretta A, Spognardi A. Analysis of DDoS-capable IoT malwares. In: 2017 federated conference on computer science and information systems (FedCSIS), Prague; 2017. p. 807–16. https://doi.org/10.15439/2017F288.
Mirai Botnet DDoS Attack. Corero, Corero. http://www.corero.com/resource-hub/mirai-botnet-ddos-attack/. Accessed 9 Dec 2019.
BrickerBot Malware emerges, permanently bricks iot devices. Trend Micro, Trend Micro Incorporated. http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/brickerbot-malware-permanently-bricks-iot-devices. Accessed 19 Apr 2017.
Zeadally S, Adi E, Baig Z, Khan IA. Harnessing artificial intelligence capabilities to improve cybersecurity. IEEE Access. 2020;8:23817–37.
Jurn J, Kim T, Kim H. An automated vulnerability detection and remediation method for software security. Sustainability. 2018;10:1652. https://doi.org/10.3390/su10051652.
Comiter M. Attacking artificial intelligence. Belfer Center for Science and International Affairs, Belfer Center for Science and International Affairs. http://www.belfercenter.org/sites/default/files/2019-08/AttackingAI/AttackingAI.pdf. Accessed 25 Aug 2019.
McMahan B, Daniel R. Federated learning: collaborative machine learning without centralized training data. Google AI Blog, Google. http://www.ai.googleblog.com/2017/04/federated-learning-collaborative.html. Accessed 6 Apr 2017.
Rojek M. Federated learning for IoT. Medium, becoming human: artificial intelligence magazine. http://www.becominghuman.ai/theres-a-better-way-of-doing-ai-in-The-iot-era-feabbbc1b589. Accessed 16 Apr 2019.
Porter E. What is a botnet? And how to protect yourself in 2020. SafetyDetectives, Safety Detectives. http://www.safetydetectives.com/blog/what-is-a-botnet-and-how-to-protect-yourself-in/#review-2. Accessed 28 Dec 2019.
Hendrickson J. What is the mirai botnet, and how can i protect my devices? How to geek, LifeSavvy media. http://www.howtogeek.com/408036/what-is-the-mirai-botnet-and-how-can-i-protect-my-devices/. Accessed 22 Mar 2019.
Understanding denial of service attacks. Cybersecurity and infrastructure security agency CISA. http://www.us-cert.cisa.gov/ncas/tips/ST04-015. Accessed 20 Nov 2019.
Moisejevs I. Poisoning attacks on machine learning. Towards data science, medium. http://www.towardsdatascience.com/poisoning-attacks-on-machine-learning-1ff247c254db. Accessed 15 July 2019.
Fang M et al. Local model poisoning attacks to Byzantine-Robust federated learning. In: Usenix security symposium. arXiv:1911.11815. Accessed 6 Apr 2020.