Divisors on rational normal scrolls
Tài liệu tham khảo
Bruns, 1988, Determinantal Rings, vol. 1327
Conca, 2007, Contracted ideals and the Gröbner fan of the rational normal curve, Algebra Number Theory, 1, 239, 10.2140/ant.2007.1.239
Cox, 1992, Ideals, Varieties, and Algorithms, 10.1007/978-1-4757-2181-2
Cutkosky, 1991, Symbolic algebras of monomial primes, J. Reine Angew. Math., 416, 71
Eisenbud, 1995, Commutative Algebra with a View Toward Algebraic Geometry, vol. 150
Eisenbud, 2005, The Geometry of Syzygies. A Second Course in Commutative Algebra and Algebraic Geometry, vol. 229
Eisenbud, 1987, On varieties of minimal degree (a centennial account), vol. 46, 3
Goto, 1994, Non-Cohen–Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik's question, Proc. Amer. Math. Soc., 120, 383
Harris, 1995, Algebraic Geometry. A First Course, vol. 133
Huneke, 1987, Hilbert functions and symbolic powers, Michigan Math. J., 34, 293, 10.1307/mmj/1029003560
K. Kurano, N. Matsuoka, On finite generation of symbolic Rees rings of space monomial curves in characteristic positive – existence of negative curves in characteristic zero, J. Algebra (2008), http://arxiv.org/abs/0801.3896, in press
A. Kustin, C. Polini, B. Ulrich, Rational normal scrolls and the defining equations of Rees algebras, preprint, 2008
Miyazaki, 2000, Sharp bounds on Castelnuovo–Mumford regularity, Trans. Amer. Math. Soc., 352, 1675, 10.1090/S0002-9947-99-02380-6
Miyazaki, 2005, Bounds on Castelnuovo–Mumford regularity for divisors on rational normal scrolls, Collect. Math., 56, 97
Reid, 1997, Chapters on algebraic surfaces, vol. 3, 3
Roberts, 1985, A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian, Proc. Amer. Math. Soc., 94, 589, 10.1090/S0002-9939-1985-0792266-5
Roberts, 1990, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem, J. Algebra, 132, 461, 10.1016/0021-8693(90)90141-A
Schreyer, 1986, Syzygies of canonical curves and special linear series, Math. Ann., 275, 105, 10.1007/BF01458587