Photoelectrochemical water splitting at nanostructured α-Fe2O3 electrodes

International Journal of Hydrogen Energy - Tập 37 - Trang 13989-13997 - 2012
Gul Rahman1,2, Oh-Shim Joo1
1Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul 130-650, Republic of Korea
2School of Science, University of Science and Technology, 52 Eoeun dong, Yuseong-gu, Daejeon 305-333, Republic of Korea

Tài liệu tham khảo

Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0 Moon, 2000, Photocatalytic production of hydrogen from water using TiO2 and B/TiO2, Catal Today, 58, 125, 10.1016/S0920-5861(00)00247-9 Liu, 2011, Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst, Angew Chem Int Ed, 50, 499, 10.1002/anie.201004801 Chouhan, 2011, Photocatalytic CdSe QDs-decorated ZnO nanotubes: an effective photoelectrode for splitting water, Chem Commun, 47, 3493, 10.1039/c0cc05548d Ng, 2010, Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting, J Phys Chem Lett, 1, 2607, 10.1021/jz100978u Chatchai, 2009, Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation, Electrochim Acta, 54, 1147, 10.1016/j.electacta.2008.08.058 Satsangi, 2008, Nanostructured hematite for photoelectrochemical generation of hydrogen, Int J Hydrogen Energy, 33, 312, 10.1016/j.ijhydene.2007.07.034 Kleiman-Shwarsctein, 2008, Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting, J Phys Chem C, 112, 15900, 10.1021/jp803775j van de Krol, 2008, Solar hydrogen production with nanostructured metal oxides, J Mater Chem, 18, 2311, 10.1039/b718969a Hensel, 2010, Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation, Nano Lett, 10, 478, 10.1021/nl903217w Le Formal, 2010, Controlling photoactivity in ultrathin hematite films for solar water-splitting, Adv Funct Mater, 20, 1099, 10.1002/adfm.200902060 Tahir, 2009, Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation, Chem Mater, 21, 3763, 10.1021/cm803510v Cha, 2011, Facile preparation of Fe2O3 thin film with photoelectrochemical properties, Chem Commun, 47, 2441, 10.1039/C0CC04775A Lindgren, 2002, Aqueous Photoelectrochemistry of hematite nanorod Array, Sol Energy Mater Sol Cells, 71, 231, 10.1016/S0927-0248(01)00062-9 Morin, 1954, Electrical properties of α-Fe2O3, Phys Rev, 93, 1195, 10.1103/PhysRev.93.1195 Sivula, 2010, Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach, J Am Chem Soc, 132, 7436, 10.1021/ja101564f Joly, 2006, Carrier dynamics in Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity, J Appl Phys, 99, 053521, 10.1063/1.2177426 Zhong, 2009, Solar water oxidation by composite Catalyst/α-Fe2O3 photoanodes, J Am Chem Soc, 131, 6086, 10.1021/ja9016478 Lin, 2011, Nanonet-based hematite heteronanostructures for efficient solar water splitting, J Am Chem Soc, 133, 2398, 10.1021/ja110741z Kumari, 2010, Spray pyrolytically deposited nanoporous Ti4+ doped hematite thin films for efficient photoelectrochemical splitting of water, Int J Hydrogen Energy, 35, 3985, 10.1016/j.ijhydene.2010.01.101 Glasscock, 2007, Enhancement of photoelectrochemical hydrogen production from hematite thin films by the Introduction of Ti and Si, J Phys Chem C, 111, 16477, 10.1021/jp074556l Ling, 2011, Sn-doped hematite nanostructures for photoelectrochemical water splitting, Nano Lett, 11, 2119, 10.1021/nl200708y Souza, 2009, The influence of the film thickness of nanostructured α-Fe2O3 on water photooxidation, Phys Chem Chem Phys, 11, 1215, 10.1039/b811946e Spray, 2011, Enhancing photoresponse of nanoparticulate α-Fe2O3 electrodes by surface composition tuning, J Phys Chem C, 115, 3497, 10.1021/jp1093433 Rosso, 2003, An ab initio model of electron transport in hematite (α-Fe2O3) basal planes, J Chem Phys, 118, 6455, 10.1063/1.1558534 Zhong, 2011, Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation, Energy Environ Sci, 4, 1759, 10.1039/c1ee01034d Tilley, 2010, Light-induced water splitting with hematite improved nanostructure and iridium oxide catalysis, Angew Chem Int Ed, 49, 6405, 10.1002/anie.201003110 Sartoretti, 2005, Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes, J Phys Chem B, 109, 13685, 10.1021/jp051546g Kay, 2006, New benchmark for water photooxidation by nanostructured α-Fe2O3 films, J Am Chem Soc, 128, 15714, 10.1021/ja064380l Duret, 2005, Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis, J Phys Chem B, 109, 17184, 10.1021/jp044127c Goncalves, 2011, Magnetite colloidal nanocrystals: a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting, J Am Chem Soc, 133, 6012, 10.1021/ja111454f Hu, 2008, Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting, Chem Mater, 20, 3803, 10.1021/cm800144q Sivula, 2011, Solar water splitting: progress using hematite (α-Fe2O3) Photoelectrodes, ChemSusChem, 4, 432, 10.1002/cssc.201000416 Wang, 2011, Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation, Nano Lett, 11, 3503, 10.1021/nl202316j Morrish, 2011, Activation of hematite nanorod arrays for photoelectrochemical water splitting, ChemSusChem, 4, 474, 10.1002/cssc.201100066 Spray, 2009, Photoactivity of transparent nanocrystalline Fe2O3 electrodes prepared via anodic electrodeposition, Chem Mater, 21, 3701, 10.1021/cm803099k Fujii, 1999, In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy, Phys Rev B, 59, 3195, 10.1103/PhysRevB.59.3195 McIntyre, 1977, X-ray photoelectron spectroscopic studies of iron oxides, Anal Chem, 49, 1521, 10.1021/ac50019a016 Ahn, 2004, Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles, J Phys Chem B, 108, 9815, 10.1021/jp035769n Hahn, 2010, Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation, ACS Nano, 4, 1977, 10.1021/nn100032y Cesar, 2008, Influence of feature size, film thickness, and Silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting, J Phys Chem C, 113, 772, 10.1021/jp809060p Le Formal, 2011, Passivating surface states on water splitting hematite photoanodes with alumina overlayers, Chem Sci, 2, 737, 10.1039/C0SC00578A