An innovative method to obtain porous PLLA scaffolds with highly spherical and interconnected pores

Cédryck Vaquette1, Céline Frochot2, Rachid Rahouadj1, Xiong Wang1
1LEMTA - Laboratoire d'Energétique et Mécanique Théorique et Appliquée (Université de Lorraine - ENSEM - ESSTIN, 2 avenue de la Forêt de Haye, TSA 60604, 54518 Vandoeuvre-les-Nancy Cedex - France)
2DCPR - Département de Chimie Physique des Réactions (1 Rue Grandville - BP 20451 54001 NANCY CEDEX - France)

Tóm tắt

AbstractScaffolding is an essential issue in tissue engineering and scaffolds should answer certain essential criteria: biocompatibility, high porosity, and important pore interconnectivity to facilitate cell migration and fluid diffusion. In this work, a modified solvent casting‐particulate leaching out method is presented to produce scaffolds with spherical and interconnected pores. Sugar particles (200–300 μm and 300–500 μm) were poured through a horizontal Meker burner flame and collected below the flame. While crossing the high temperature zone, the particles melted and adopted a spherical shape. Spherical particles were compressed in plastic mold. Then, poly‐L‐lactic acid solution was cast in the sugar assembly. After solvent evaporation, the sugar was removed by immersing the structure into distilled water for 3 days. The obtained scaffolds presented highly spherical interconnected pores, with interconnection pathways from 10 to 100 μm. Pore interconnection was obtained without any additional step. Compression tests were carried out to evaluate the scaffold mechanical performances. Moreover, rabbit bone marrow mesenchymal stem cells were found to adhere and to proliferate in vitro in the scaffold over 21 days. This technique produced scaffold with highly spherical and interconnected pores without the use of additional organic solvents to leach out the porogen. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008

Từ khóa


Tài liệu tham khảo

10.1126/science.8493529

10.1177/036354658801600602

10.1016/S0142-9612(03)00120-0

Chaignaud BE, 1997, The history of tissue engineering using synthetic biodegradable polymer scaffolds and cells. Synthetic Biodegradable Polymer Scaffolds, 5

10.1002/jbm.820291107

10.1016/S0142-9612(03)00206-0

10.1089/ten.2005.11.953

10.1016/j.bone.2004.02.027

Li S, 1995, Degradable Polymer, Principles and Applications, 43, 10.1007/978-94-011-0571-2_4

10.1016/0142-9612(96)85755-3

10.1002/(SICI)1097-4636(19981205)42:3<417::AID-JBM11>3.0.CO;2-D

10.1002/pi.1199

10.1016/j.biomaterials.2004.01.054

10.1016/j.biomaterials.2004.01.037

Vaquette C, 2006, In vitro biocompatibility of different polyester membranes, Biomed Mater Eng, 16, S131

10.1016/0032-3861(94)90953-9

MikosAG SarakinosG VacantiJP. Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures US patent 5 514 378 1996.

10.1016/S0142-9612(03)00284-9

10.1016/0142-9612(96)87284-X

10.1002/jbm.10212

10.1016/j.biomaterials.2004.01.014

10.1002/(SICI)1097-4636(199910)47:1<8::AID-JBM2>3.0.CO;2-L

10.1016/S0142-9612(99)00073-3

10.1016/S0142-9612(01)00232-0

10.1016/j.biomaterials.2005.07.023

10.1089/107632702753503009

10.1089/ten.2005.11.101

10.1089/ten.2006.12.1197

10.1089/107632701300003269

10.1002/jbm.b.10066

10.1163/156856202320253929

10.1002/1097-4636(200011)52:2<430::AID-JBM25>3.0.CO;2-L

10.1016/j.biomaterials.2004.01.046

10.1002/jbm.b.10049

10.1016/j.biomaterials.2003.08.058

10.1016/j.polymer.2005.02.120

10.1163/156856295X00805

10.1016/S0142-9612(98)00097-0

10.1016/j.biomaterials.2006.03.008

10.1002/app.22289

10.1007/s10856-005-2604-7

10.1002/1097-4636(2001)58:2<180::AID-JBM1005>3.0.CO;2-5

10.1016/j.biomaterials.2006.11.024

10.1023/A:1008973120918

10.1097/00000658-199807000-00002

10.1016/j.biomaterials.2004.01.012

10.1089/107632702753503045