Evaluation of heat sink performance using PCM and vapor chamber/heat pipe

Renewable Energy - Tập 163 - Trang 698-719 - 2021
A. Ghanbarpour1, M.J. Hosseini2, A.A. Ranjbar1, M. Rahimi2, R. Bahrampoury3, M. Ghanbarpour4
1School of Mechanical Engineering, Babol University of Technology, Babol, Iran
2Department of Mechanical Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
3Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
4Department of Energy Technology, KTH-Royal Institute of Technology, Stockholm, Sweden

Tài liệu tham khảo

Sathe, 2019, Thermal analysis of an inclined heat sink with finned PCM container for solar applications, Int. J. Heat Mass Tran., 144, 10.1016/j.ijheatmasstransfer.2019.118679 Kosny, 2012, Field thermal performance of naturally ventilated solar roof with PCM heat sink, Sol. Energy, 86, 2504, 10.1016/j.solener.2012.05.020 Huang, 2011, Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics, Sol. Energy Mater. Sol. Cells, 95, 1598, 10.1016/j.solmat.2011.01.008 Yousef, 2019, An experimental study on the performance of single slope solar still integrated with a PCM-based pin-finned heat sink, Energy Procedia, 156, 100, 10.1016/j.egypro.2018.11.102 Ho, 2019, Experimental study of cooling performance of water-based alumina nanofluid in a minichannel heat sink with MEPCM layer embedded in its ceiling, Int. Commun. Heat Mass Tran., 103, 1, 10.1016/j.icheatmasstransfer.2019.02.001 Yan, 2020, Numerical study on convective heat transfer of nanofluid in a minichannel heat sink with micro-encapsulated PCM-cooled ceiling, Int. J. Heat Mass Tran., 153, 10.1016/j.ijheatmasstransfer.2020.119589 Date, 2015, Theoretical and experimental estimation of limiting input heat flux for thermoelectric power generation with passive cooling, Sol. Energy, 111, 201, 10.1016/j.solener.2014.10.043 Singh, 2011, Electric power generation from solar pond using combined thermosyphon and thermoelectric modules, Sol. Energy, 85, 371, 10.1016/j.solener.2010.11.012 Orr, 2014, Electricity generation from an exhaust heat recovery system utilizing thermoelectric cells and heat pipes, Appl. Therm. Eng., 73, 586, 10.1016/j.applthermaleng.2014.07.056 Feng, 2018, Natural convection in a cross-fin heat sink, Appl. Therm. Eng., 132, 30, 10.1016/j.applthermaleng.2017.12.049 Yang, 2008, Numerical study of pin-fin heat sink with un-uniform fin height design, Int. J. Heat Mass Tran., 51, 4788, 10.1016/j.ijheatmasstransfer.2008.02.017 Kim, 2012, Thermal optimization of plate-fin heat sinks with fins of variable thickness under natural convection, Int. J. Heat Mass Tran., 55, 752, 10.1016/j.ijheatmasstransfer.2011.10.034 Kim, 2010, Thermal optimization of plate-fin heat sinks with variable fin thickness, Int. J. Heat Mass Tran., 53, 5988, 10.1016/j.ijheatmasstransfer.2010.07.052 Moradikazerouni, 2019, Investigation of a computer CPU heat sink under laminar forced convection using a structural stability method, Int. J. Heat Mass Tran., 134, 1218, 10.1016/j.ijheatmasstransfer.2019.02.029 Sufian, 2017, Heat transfer enhancement of LEDs with a combination of piezoelectric fans and a heat sink, Microelectron. Reliab., 68, 39, 10.1016/j.microrel.2016.11.011 Sahoo, 2016, Application of TCE-PCM based heat sinks for cooling of electronic components: a review, Renew. Sustain. Energy Rev., 59, 550, 10.1016/j.rser.2015.12.238 Saha, 2008, Studies on optimum distribution of fins in heat sinks filled with phase change materials, ASME J. Heat Transfer, 130, 10.1115/1.2804948 Fok, 2010, Cooling of portable hand-held electronic devices using phase change materials in heat sinks, Int. J. Therm. Sci., 49, 109, 10.1016/j.ijthermalsci.2009.06.011 Hosseinizadeh, 2011, Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins, Appl. Therm. Eng., 31, 3827, 10.1016/j.applthermaleng.2011.07.031 Baby, 2013, Thermal optimization of PCM based pin fin heat sinks: an experimental study, Appl. Therm. Eng., 54, 65, 10.1016/j.applthermaleng.2012.10.056 Levin, 2013, Numerical optimization of a PCM-based heat sink with internal fins, Int. J. Heat Mass Tran., 61, 638, 10.1016/j.ijheatmasstransfer.2013.01.056 Mahmoud, 2013, Experimental investigation of inserts configuration and PCM type on the thermal performance of PCM based heat sinks, Appl. Energy, 112, 1349, 10.1016/j.apenergy.2013.04.059 Pakrouh, 2015, A numerical method for PCM-based pin fin heat sinks optimization, Energy Convers. Manag., 103, 542, 10.1016/j.enconman.2015.07.003 Arshad, 2017, Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronic devices: effect of pin thickness and PCM volume fraction, Appl. Therm. Eng., 112, 143, 10.1016/j.applthermaleng.2016.10.090 Ali, 2017, Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling electronic devices, Int. J. Heat Mass Tran., 112, 649, 10.1016/j.ijheatmasstransfer.2017.05.004 Kalbasi, 2019, Studies on optimum fins number in PCM-based heat sinks, Energy, 171, 1088, 10.1016/j.energy.2019.01.070 Yazici, 2019, Combined effects of inclination angle and fin number on thermal performance of a PCM-based heat sink, Appl. Therm. Eng., 159, 10.1016/j.applthermaleng.2019.113956 Li, 2010, Thermal performance of plate-fin vapor chamber heat sinks, Int. Commun. Heat Mass Tran., 37, 731, 10.1016/j.icheatmasstransfer.2010.05.015 Naphon, 2013, Application of two-phase vapor chamber technique for hard disk drive cooling of PCs, Int. Commun. Heat Mass Tran., 40, 32, 10.1016/j.icheatmasstransfer.2012.10.014 Naphon, 2015, Thermal cooling enhancement techniques for electronic components, Int. Commun. Heat Mass Tran., 61, 140, 10.1016/j.icheatmasstransfer.2014.12.005 Tang, 2017, Thermal management of high-power LEDs based on integrated heat sink with vapor chamber, Energy Convers. Manag., 151, 1, 10.1016/j.enconman.2017.08.087 Han, 2018, Investigation of the thermal performance of a novel flat heat pipe sink with multiple heat sources, Int. Commun. Heat Mass Tran., 94, 71, 10.1016/j.icheatmasstransfer.2018.03.017 Chang, 2019, Thermal performance evaluation of thin vapor chamber, Appl. Therm. Eng., 149, 220, 10.1016/j.applthermaleng.2018.12.034 Velardo, 2019, On the effective thermal conductivity of the vapour region in vapour chamber heat spreaders, Int. J. Heat Mass Tran., 145, 10.1016/j.ijheatmasstransfer.2019.118797 Ali, 2019, Application of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: a recent review, J. Energy Storage, 26 Yin, 2008, Experimental research on heat transfer mechanism of heat sink with composite phase change materials, Energy Convers. Manag., 49, 1740, 10.1016/j.enconman.2007.10.022 Weng, 2011, Heat pipe with PCM for electronic cooling, Appl. Energy, 88, 1825, 10.1016/j.apenergy.2010.12.004 Behi, 2017, Investigation of PCM-assisted heat pipe for electronic cooling, Appl. Therm. Eng., 127, 1132, 10.1016/j.applthermaleng.2017.08.109 Yang, 2018, Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock, Energy Convers. Manag., 160, 467, 10.1016/j.enconman.2018.01.056 Zhu, 2018, Transient performance of a PCM-based heat sink with a partially filled metal foam: effects of the filling height ratio, Appl. Therm. Eng., 128, 966, 10.1016/j.applthermaleng.2017.09.047 Churchill, 1975, Correlating equations for laminar and turbulent free convection from a vertical plate, Int. J. Heat Mass Tran., 18, 1323, 10.1016/0017-9310(75)90243-4 Churchill, 1973, Correlations for laminar forced convection with uniform heating in flow over a plate and in developing and fully developed flow in a tube, J. Heat Tran., 95, 78, 10.1115/1.3450009 Wang, 2010, Development of 30-Watt high-power LEDs vapor chamber-based plate, Int. J. Heat Mass Tran., 53, 3990, 10.1016/j.ijheatmasstransfer.2010.05.018 Wei, 2006, Modeling of vapor chamber as heat spreading devices, 578