Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels
Tài liệu tham khảo
Allen, 2007, Mycorrhizal Fungi: highways for water and nutrients in arid soils, Vadose Zone J., 6, 291, 10.2136/vzj2006.0068
Assunção, 2010, Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency, Proc. Natl. Acad. Sci. U. S. A., 107, 10296, 10.1073/pnas.1004788107
Bais, 2006, The role of root exudates in rhizosphere interactions with plants and other organisms, Annu. Rev. Plant Biol., 57, 233, 10.1146/annurev.arplant.57.032905.105159
Bouain, 2019, Getting to the root of plant mineral nutrition: combinatorial nutrient stresses reveal emergent properties, Trends Plant Sci., 24, 542, 10.1016/j.tplants.2019.03.008
Bouain, 2019, Systems genomics approaches provide new insights into Arabidopsis thaliana root growth regulation under combinatorial mineral nutrient limitation, PLoS Genet., 15, e1008392, 10.1371/journal.pgen.1008392
Boussingault, 1855, Recherches sur la végétation. De l’action du salpêtre sur le développement des plantes, J. Pharm. Chimie, 25, 122
Briat, 2015, Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of phosphate starvation response 1 (PHR1), Front. Plant Sci., 6, 290, 10.3389/fpls.2015.00290
Brundrett, 2018, Evolutionary history of mycorrhizal symbioses and global host plant diversity, New Phytol., 220, 1108, 10.1111/nph.14976
Buchner, 2014, Complex phylogeny and gene expression patterns of the members of the nitrate transporter1/peptide transporter family (NPF) in wheat, J. Exp. Bot., 19, 5697, 10.1093/jxb/eru231
Bulgarelli, 2013, Structure and functions of the bacterial microbiota of plants, Annu. Rev. Plant Biol., 64, 807, 10.1146/annurev-arplant-050312-120106
Caloin, 1984, Analysis of the time course change in nitrogen content of Dactylis glomerata L. Using a model of plant growth, Ann. Bot., 54, 69, 10.1093/oxfordjournals.aob.a086775
Chen, 2016, Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition, Curr. Biol., 26, 1, 10.1016/j.cub.2015.12.066
Chutia, 2019, Iron and phosphate deficiency regulators concertedly control coumarin profiles in Arabidopsis thaliana roots during iron, phosphate, and combined deficiencies, Front. Plant Sci., 10, 113, 10.3389/fpls.2019.00113
Clarholm, 2002, Bacteria and protozoa as integral components of the forest ecosystem – their role in creating a naturally varied soil fertility, Antonie Van Leeuwenhoek, 81, 309, 10.1023/A:1020543424098
Corrêa, 2015, Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown, Mycorrhiza, 25, 499, 10.1007/s00572-015-0627-6
Cui, 2019, Nitrate transporter NPF7. 3/NRT1. 5 plays an essential role in regulating phosphate deficiency responses in Arabidopsis, Biochem. Biophys. Res. Commun., 5081, 314, 10.1016/j.bbrc.2018.11.118
Dakora, 2002, Root exudates as mediators of mineral acquisition in low-nutrient environments, Plant Soil, 245, 201, 10.1023/A:1020809400075
De Wit, 1994, Resource use analysis in agriculture: a struggle for interdisciplinarity, 41
Delhon, 1996, Diurnal regulation of NO3− uptake in soybean plants. IV. Dependence on current photosynthesis and sugar availability to the roots, J. Exp. Bot., 47, 893, 10.1093/jxb/47.7.893
Devienne-Baret, 2000, Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions, Ann. Bot., 86, 995, 10.1006/anbo.2000.1264
Duru, 1997, A nitrogen and phosphorus herbage nutrient index as a tool for assessing the effect of N and P supply on the dry matter yield of permanent pastures, Nutr. Cycl. Agroecosyst., 47, 59, 10.1007/BF01985719
Duru, 1997, N and P-K status of herbage: use for diagnosis of grasslands
Facelli, 2010, Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition, New Phytol., 185, 1050, 10.1111/j.1469-8137.2009.03162.x
Forde, 2002, The role of long-distance signaling in plant response to nitrate and other nutrients, J. Exp. Bot., 53, 39
Fourcroy, 2014, Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency, New Phytol., 201, 155, 10.1111/nph.12471
Fourcroy, 2016, Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 High-Affinity Root Fe(2+) transport system, Mol. Plant, 9, 485, 10.1016/j.molp.2015.09.010
Gansel, 2001, Differential regulation of the NO3− and NH4+ transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant, Plant J., 26, 143, 10.1046/j.1365-313x.2001.01016.x
Garcia, 2018, Microbial group dynamics in plant rhizospheres and their implications on nutrient cycling, Front. Microbiol., 9, 1516, 10.3389/fmicb.2018.01516
Garnett, 2013, The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle, New Phytol., 198, 82, 10.1111/nph.12166
Gastal, 2002, N uptake and distribution in crops: an agronomical and ecophysiological perspective, J. Exp. Bot., 53, 789, 10.1093/jexbot/53.370.789
Gastal, 1989, Relationships between nitrogen uptake and carbon assimilation in whole plant of tall fescue, Plant Cell Environ., 12, 407, 10.1111/j.1365-3040.1989.tb01956.x
Gojon, 2011, Nitrate transceptor(s) in plants, J. Exp. Bot., 62, 2299, 10.1093/jxb/erq419
Greenwood, 1990, Decline in percentage N of C3 and C4 crops with increasing plant mass, Ann. Bot., 66, 425, 10.1093/oxfordjournals.aob.a088044
Griffiths, 1994, Soil nutrient flow, Soil Protozoa, 65
Guether, 2009, A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi, Plant Physiol., 150, 73, 10.1104/pp.109.136390
Hara, 2016, Isolation of inositol hexaphosphate (IHP)-degrading bacteria from arbuscular mycorrhizal fungal hyphal compartments using a modified baiting method involving alginate beads containing IHP, Microbes Environ., 31, 234, 10.1264/jsme2.ME15206
Harrison, 2002, A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi, Plant Cell, 14, 2413, 10.1105/tpc.004861
Hoeksema, 2010, A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi, Ecology Lett., 13, 394, 10.1111/j.1461-0248.2009.01430.x
Hu, 2019, Nitrate–NRT1. 1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants, Nat. Plants, 5, 401, 10.1038/s41477-019-0384-1
Irshad, 2012, Phosphorus acquisition from phytate depends on efficient bacterial grazing, irrespective of the mycorrhizal status of Pinus pinaster, Plant Soil, 358, 148, 10.1007/s11104-012-1161-3
Ismande, 1994, N demand and regulation of nitrate uptake, Plant Physiol., 105, 3, 10.1104/pp.105.1.3
Jacoby, 2017, The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions, Front. Plant Sci., 8, 1617, 10.3389/fpls.2017.01617
Jakobsen, 2001, Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores, New Phytol., 149, 95, 10.1046/j.1469-8137.2001.00006.x
Khan, 2014, Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1; H3 in Arabidopsis, J. Exp. Bot., 65, 871, 10.1093/jxb/ert444
Kisko, 2018, LPCAT1 controls phosphate homeostasis in a zinc-dependent manner, Elife, 7, 10.7554/eLife.32077
Koller, 2013, Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants, New Phytol., 199, 203, 10.1111/nph.12249
Lejay, 1999, Molecular and functional regulation of two nitrate uptake systems by N and C-status of Arabidopsis plants, Plant J., 18, 509, 10.1046/j.1365-313X.1999.00480.x
Lejay, 2008, Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis, Plant Physiol., 146, 2036, 10.1104/pp.107.114710
Lemaire, 1997, N uptake and distribution in plant canopies, 3
Lemaire, 1984, Relation entre dynamique decroissance et dynamique de prélèvement d’azote par un peuplement de graminées fourragères. 1 – Etude de l’effet du milieu, Agronomie, 4, 423, 10.1051/agro:19840503
Lemaire, 1984, Relation entre dynamique de croissance et dynamique de prélèvement d’azote par un peuplement de graminées fourragères. 2 – etude de la variabilité entre génotypes, Agronomie, 4, 431, 10.1051/agro:19840504
Lemaire, 1985, Etude des relations entre la dynamique de prélèvement d’azote et la dynamique de croissance en matière sèche d’un peuplement de luzerne (Medicago sativa L.), Agronomie, 5, 685, 10.1051/agro:19850803
Lemaire, 2008, Diagnosis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management, Eur. J. Agron., 28, 614, 10.1016/j.eja.2008.01.005
Lemaire, 2019, Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping. A review, Agron. Sustain. Dev., 39, 27, 10.1007/s13593-019-0570-6
Lin, 2013, Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane–localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis, Plant Cell, 25, 4061, 10.1105/tpc.113.116012
Loladze, 2014, Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition, Elife, 3, 10.7554/eLife.02245
Marschner, 1986, Mechanism of phosphorus‐induced zinc deficiency in cotton. II. Evidence for impaired shoot control of phosphorus uptake and translocation under zinc deficiency, Physiol. Plant., 68, 491, 10.1111/j.1399-3054.1986.tb03387.x
Medici, 2014, The primary nitrate response: a multifaceted signaling pathway, J. Exp. Bot., 65, 5567, 10.1093/jxb/eru245
Medici, 2019, Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants, Plant Cell, 31, 1171, 10.1105/tpc.18.00656
Mitscherlich, 1924, 100
Nacry, 2013, Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource, Plant Soil, 370, 1, 10.1007/s11104-013-1645-9
Ohkubo, 2017, Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition, Nat. Plants, 3, 17029, 10.1038/nplants.2017.29
Pal, 2017, TransDetect identifies a new regulatory module controlling phosphate accumulation, Plant Physiol., 175, 916, 10.1104/pp.17.00568
Plassard, 2019, Phosphorus transport in mycorrhiza: how far are we?, Trends Plant Sci., 24, 794, 10.1016/j.tplants.2019.06.004
Plénet, 2000, Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration, Plant Soil, 216, 65, 10.1023/A:1004783431055
Rao, 1976, Nitrate absorption by barley: I. Kinetics and energetics, Plant Physiol., 57, 55, 10.1104/pp.57.1.55
Rausch, 2001, A phosphate transporter expressed in arbuscule-containing cells in potato, Nature, 414, 462, 10.1038/35106601
Reussi Calvo, 2011, Diagnosing sulfur deficiency in spring red wheat: plant analysis, J. Plant Nutr., 34, 573, 10.1080/01904167.2011.538118
Robin, 2006, The soil type affects both the differential accumulation of iron between wild-type and ferritin over-expressor tobacco plants and the sensitivity of their rhizosphere bacterioflora to iron stress, Plant Soil, 283, 73, 10.1007/s11104-005-9437-5
Robin, 2008, Iron dynamics in the rhizosphere : consequences for plant health and nutrition, Adv. Agron., 99, 183, 10.1016/S0065-2113(08)00404-5
Rodríguez-Celma, 2013, Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula, Plant Physiol., 162, 1473, 10.1104/pp.113.220426
Salette, 1991, Diagnostic de l’état de nutrition minérale d’une prairie par l’analyse minérale du végétal: principes, mise en oeuvre, exemples, Fourrages, 125, 3
Sawers, 2017, Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters, New Phytol., 214, 632, 10.1111/nph.14403
Schmid, 2014, Feruloyl-CoA 6’-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis, Plant Physiol., 164, 160, 10.1104/pp.113.228544
Sisó-Terraza, 2016, Accumulation and secretion of coumarinolignans and other coumarins in Arabidopsis thaliana roots in response to Iron deficiency at high pH, Front. Plant Sci., 23, 1711
Smith, 2008
Smith, 2003, Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses, Plant Physiol., 133, 16, 10.1104/pp.103.024380
Smith, 2004, Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake, New Phytol., 162, 511, 10.1111/j.1469-8137.2004.01039.x
Stringlis, 2018, MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health, Proc. Natl. Acad. Sci. U. S. A., 29, E5213, 10.1073/pnas.1722335115
Taub, 2008, Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses, J. Int. Plant Biol., 50, 1365, 10.1111/j.1744-7909.2008.00754.x
Tourraine, 1994, Regulation of nitrate uptake at the whole plant level, 11
Trap, 2016, Ecological importance of soil bacterivores for ecosystem functions, Plant Soil, 398, 1, 10.1007/s11104-015-2671-6
Treseder, 2004, A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies, New Phytol., 164, 347, 10.1111/j.1469-8137.2004.01159.x
Uddling, 2018, Crop quality under rising atmospheric CO2, Curr. Opin. Plant Biol., 45, 262, 10.1016/j.pbi.2018.06.001
Ulrich, 1952, Physiological bases for assessing nutritional requirements of plants, Annu. Rev. Plant Physiol., 3, 207, 10.1146/annurev.pp.03.060152.001231
Vansuyt, 2000, Soil-dependent variability of leaf iron accumulation in transgenic tobacco overexpressing ferritin, Plant Physiol. Biochem., 38, 499, 10.1016/S0981-9428(00)00763-4
Voges, 2019, Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome, Proc. Natl. Acad. Sci. U. S. A., 10.1073/pnas.1820691116
von Liebig, 1855
Von Wittgenstein, 2014, Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants, BMC Evol. Biol., 14, 11, 10.1186/1471-2148-14-11
Wang, 1993, Effects of pH on arbuscular mycorrhiza I. Field observations on the long-term liming experiments at Rothamsted and Woburn, New Phytol., 124, 465, 10.1111/j.1469-8137.1993.tb03837.x
Wang, 2004, Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis, Plant Physiol., 136, 2512, 10.1104/pp.104.044610
Wang, 2016, In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere, J. Exp. Bot., 67, 1689, 10.1093/jxb/erv561
Ward, 2008, The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency, Plant Physiol., 147, 1181, 10.1104/pp.108.118562
Yuan, 2007, The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters, Plant Cell, 19, 2636, 10.1105/tpc.107.052134
Zhang, 2016, Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium, New Phytol., 210, 1022, 10.1111/nph.13838
Zhang, 2018, Arbuscular mycorrhizal fungi stimulate organic phosphate mobilization associated with changing bacterial community structure under field conditions, Environ. Microbiol. Rep., 20, 2639, 10.1111/1462-2920.14289
Ziadi, 2007, Relationship between P and N concentration in corn, Agron. J., 99, 833, 10.2134/agronj2006.0199
Ziadi, 2008, Relationship between phosphorus and nitrogen concentrations in spring wheat, Agron. J., 100, 80, 10.2134/agronj2007.0119