The synergistic effect of nitrogen atoms and triblock structure on stabilizing gold nanoparticles for catalytic reduction of 4-nitrophenol

Springer Science and Business Media LLC - Tập 50 - Trang 123-129 - 2017
Yu Dai1,2, Tao Ren3, Ying Wang3, Xiaojin Zhang1,2
1Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
2Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, China
3Wuhan Electric Power Technical College, Wuhan, China

Tóm tắt

Gold nanoparticles (AuNPs) play an important role in catalytic reduction of 4-nitrophenol. To obtain highly dispersed and stable AuNPs, the stabilizer is required. In this work, core-shell-corona polymeric micelles prepared by self-assembly of the commercial ABC triblock polymer poly(ethylene oxide-b-2-vinyl pyridine-b-styrene) (abbreviated to PEO-b-P2VP-b-PS) were explored as an excellent stabilizer of AuNPs. PEO-b-P2VP-b-PS-stabilized AuNPs with the diameter of approximately 7 nm were prepared through chemical reduction of Au ions in aqueous medium at mild conditions. The preparation was environmentally friendly without using any organic solvents and suitable for commercial process without heat. PEO-b-P2VP-b-PS-stabilized AuNPs had high catalytic activity for chemical reduction of 4-nitrophenol. The results of stability and catalytic activity indicated that nitrogen atoms and triblock structure of PEO-b-P2VP-b-PS had synergistic effect on stabilizing AuNPs.

Tài liệu tham khảo

Zhang C, Jiang YH, Li YL, Hu ZX, Zhou L, Zhou MH (2013a) Three-dimensional electrochemical process for wastewater treatment: a general review. Chem Eng J 228:455–467. doi:10.1016/j.cej.2013.05.033 Guo PC, Tang L, Tang J, Zeng GM, Huang BB, Dong HR, Zhang Y, Zhou YY, Deng YC, Ma LL, Tan SR (2016) Catalytic reduction-adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon. J Colloid Interface Sci 469:78–85. doi:10.1016/j.jcis.2016.01.063 Zhao PX, Feng XW, Huang DS, Yang GY, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord Chem Rev 287:114–136. doi:10.1016/j.ccr.2015.01.002 Lin C, Tao K, Hua DY, Ma Z, Zhou SH (2013) Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4. Molecules 18:12609–12620. doi:10.3390/molecules181012609 Hansen TW, Delariva AT, Challa SR, Datye AK (2013) Sintering of catalytic nanoparticles: particle migration or ostwald ripening? Acc Chem Res 46:1720–1730. doi:10.1021/ar3002427 Pachon LD, Rothenberg G (2008) Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl Organomet Chem 22:288–299. doi:10.1002/aoc.1382 Dimitratos N, Villa A, Prati L, Hammond C, Chan-Thaw CE, Cookson J, Bishop PT (2016) Effect of the preparation method of supported Au nanoparticles in the liquid phase oxidation of glycerol. Appl Catal A-Gen 514:267–275. doi:10.1016/j.apcata.2015.12.031 Kyriakidou EA, Khivantsev K, Gostanian TM, Alexeev OS, Amiridis MD (2015) Silica-supported gold/dendrimer nanocomposites with controlled sizes of gold particles. Appl Catal A-Gen 504:482–492. doi:10.1016/j.apcata.2014.11.022 Deng HJ, Wang SX, Jin S, Yang S, Xu YJ, Liu LL, Xiang J, Hu DQ, Zhu MZ (2015) Active metal (cadmium) doping enhanced the stability of inert metal (gold) nanocluster under O-2 atmosphere and the catalysis activity of benzyl alcohol oxidation. Gold Bull 48:161–167. doi:10.1007/s13404-015-0174-0 Xia YY, Wan JM, Gu QF (2011) Silk fibroin fibers supported with high density of gold nanoparticles: fabrication and application as catalyst. Gold Bull 44:171–176. doi:10.1007/s13404-011-0024-7 Wan DC, Fu Q, Huang JL (2006) Synthesis of amphiphilic hyperbranched polyglycerol polymers and their application as template for size control of gold nanoparticles. J Appl Polym Sci 101:509–514. doi:10.1002/app.23309 Zhang H, Cui H (2009) Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25:2604–2612. doi:10.1021/la803347h Wang JC, Neogi P, Forciniti D (2006) On one-dimensional self-assembly of surfactant-coated nanoparticles. J Chem Phys 125:194717. doi:10.1063/1.2375091 Pettibone JM, Hudgens JW (2011) Gold cluster formation with phosphine ligands: etching as a size-selective synthetic pathway for small clusters? ACS Nano 5:2989–3002. doi:10.1021/nn200053b Mandal D, Ghosh M, Maiti S, Das K, Das PK (2014) Water-in-oil microemulsion doped with gold nanoparticle decorated single walled carbon nanotube: scaffold for enhancing lipase activity. Colloid Surf B-Biointerfaces 113:442–449. doi:10.1016/j.colsurfb.2013.09.047 Zhang JG, Yuan Y, Kilpin KJ, Kou Y, Dyson PJ, Yan N (2013b) Thermally responsive gold nanocatalysts based on a modified poly-vinylpyrrolidone. J Mol Catal A-Chem 371:29–35. doi:10.1016/j.molcata.2013.01.030 Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190. doi:10.1021/ar000110a Chen J, Xiao P, Gu JC, Han D, Zhang JW, Sun AH, Wang WQ, Chen T (2014) A smart hybrid system of Au nanoparticle immobilized PDMAEMA brushes for thermally adjustable catalysis. Chem Commun 50:1212–1214. doi:10.1039/c3cc47386d Huang X, Li BY, Zhang H, Hussain I, Liang LY, Tan BE (2011) Facile preparation of size-controlled gold nanoparticles using versatile and end-functionalized thioether polymer ligands. Nano 3:1600–1607. doi:10.1039/c0nr00835d Dai Y, Li Y, Wang SP (2015) ABC triblock copolymer-stabilized gold nanoparticles for catalytic reduction of 4-nitrophenol. J Cata 329:425–430. doi:10.1016/j.jcat.2015.06.006 Dai Y, Zhang X, Zhuo R (2016a) Amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ϵ-caprolactone) synthesis, self-assembly and application as stabilizer of platinum nanoparticles. Polym Int 65:691–697. doi:10.1002/pi.5118 Dai Y, Yu P, Zhang XJ, Zhuo RX (2016b) Gold nanoparticles stabilized by amphiphilic hyperbranched polymers for catalytic reduction of 4-nitrophenol. J Cata 337:65–71. doi:10.1016/j.jcat.2016.01.014 Li YQ, Bastakoti BP, Malgras V, Li CL, Tang J, Kim JH, Yamauchi Y (2015) Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes. Angew Chem-Int Edit 54:11073–11077. doi:10.1002/anie.201505232 Kim K, Lee HB, Lee JW, Park HK, Shin KS (2008) Self-assembly of poly(ethylenimine)-capped Au nanoparticles at a toluene-water interface for efficient surface-enhanced Raman scattering. Langmuir 24:7178–7183. doi:10.1021/la800733x Zhang AQ, Cai LJ, Sui L, Qian DJ, Chen M (2013c) Reducing properties of polymers in the synthesis of noble metal nanoparticles. Polym Rev 53:240–276. doi:10.1080/15583724.2013.776587 Hvolbaek B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Norskov JK (2007) Catalytic activity of Au nanoparticles. Nano Today 2:14–18. doi:10.1016/s1748-0132(07)70113-5 Liu Y, Liu LL, Yuan M, Guo R (2013) Preparation and characterization of casein-stabilized gold nanoparticles for catalytic applications. Colloid Surf A-Physicochem Eng Asp 417:18–25. doi:10.1016/j.colsurfa.2012.08.050 Wu H, Huang X, Gao MM, Liao XP, Shi B (2011) Polyphenol-grafted collagen fiber as reductant and stabilizer for one-step synthesis of size-controlled gold nanoparticles and their catalytic application to 4-nitrophenol reduction. Green Chem 13:651–658. doi:10.1039/c0gc00843e