Assessing extreme maturities – Challenging examples from immature Jordanian to overmature Far Eastern unconventional formations

Marine and Petroleum Geology - Tập 129 - Trang 105103 - 2021
Bastian Sauerer1, Agnieszka Furmann2, Alan Fernandes3, Hanin Samara4, Philip Jaeger4, Omar Al-Ayed5, Wael Abdallah1
1Schlumberger Middle East, S.A., Schlumberger Dhahran Carbonate Research Center, Dhahran Techno Valley, P.O. Box 39011, Dammam 31942, Saudi Arabia
2Schlumberger Reservoir Laboratories, 6350 West Sam Houston Pkwy North, Houston, TX 77041, USA
3Schlumberger Geoservices, Ash Shulah, Dammam, 34266, Saudi Arabia, Saudi Arabia
4Clausthal University of Technology, Institute of Subsurface Energy Systems, Agricolastraße 10, 38678 Clausthal-Zellerfeld, Germany
5Al-Balqa Applied University, Department of Chemical Engineering, Faculty of Engineering Technology, P. O. Box 15008, Marka, 11134, Amman, Jordan

Tài liệu tham khảo

Abdallah, 2012, Raman spectrum of asphaltene, Energy Fuels, 26, 6888, 10.1021/ef301247n Abed, 2013, The eastern Mediterranean phosphorite giants: an interplay between tectonics and upwelling, GeoArabia, 18, 67, 10.2113/geoarabia180267 Abed, 2009, Characterization and genesis of some Jordanian oil shales, Dirasat Pure Sci., 36, 7 Abed, 2005, Source rock potential of the phosphorite–bituminous chalk–marl sequence in Jordan, Mar. Petrol. Geol., 22, 413, 10.1016/j.marpetgeo.2004.12.004 Al-Hajeri, 2020, Maturity estimation for Type II-S kerogen using Raman spectroscopy – a case study from the Najmah and Makhul Formations in Kuwait, Int. J. Coal Geol., 217, 103317, 10.1016/j.coal.2019.103317 Al-Hajeri, 2021, Organic petrography and geochemistry of the prolific source rocks from the Jurassic Najmah and Cretaceous Makhul Formations in Kuwait – validation and expansion of Raman spectroscopic thermal maturity applications, Int. J. Coal Geol., 236, 103654, 10.1016/j.coal.2020.103654 2015, D2797 Standard practice for preparing coal samples for microscopical analysis by reflected light 2015, D7708 Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks Behar, 2001, Rock-eval 6 technology: performances and developments, Oil Gas Sci. Technol. - Rev. L’inst. Fran. Petrol., 56, 111, 10.2516/ogst:2001013 Beik, 2019, Maastrichtian to early Paleocene sea level changes and climatic evolution on the southeastern Tethys margin, Mar. Petrol. Geol., 100, 285, 10.1016/j.marpetgeo.2018.11.018 Bertrand, 1993, Standardization of solid bitumen reflectance to vitrinite in some Paleozoic sequences of Canada, Energy Sources, 15, 269, 10.1080/00908319308909027 Beyssac, 2002, Raman spectra of carbonaceous material in metasediments: a new geothermometer, J. Metamorph. Geol., 20, 859, 10.1046/j.1525-1314.2002.00408.x Beyssac, 2003, On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy, Spectrochim. Acta Mol. Biomol. Spectrosc., 59, 2267, 10.1016/S1386-1425(03)00070-2 Cardott, 1991, Graptolite reflectance as a potential thermal-maturation indicator, vol. 92, 203 Carvajal-Ortiz, 2018, Geochemical screening of source rocks and reservoirs: the importance of using the proper analytical program, Int. J. Coal Geol., 190, 56, 10.1016/j.coal.2017.11.014 Cesare, 1999, Fluid-present anatexis of metapelites at El Joyazo (SE Spain): constraints from Raman spectroscopy of graphite, Contrib. Mineral. Petrol., 135, 41, 10.1007/s004100050496 Cheshire, 2017, Assessing thermal maturity beyond the reaches of vitrinite reflectance and Rock-Eval pyrolysis: a case study from the Silurian Qusaiba formation, Int. J. Coal Geol., 180, 29, 10.1016/j.coal.2017.07.006 Cole, 1994, Graptolite-Chitinozoan reflectance and its relationship to other geochemical maturity indicators in the Silurian Qusaiba Shale, Saudi Arabia, Energy Fuels, 8, 1443, 10.1021/ef00048a035 Craddock, 2020, Universal curves describing the chemical and physical evolution of type II kerogen during thermal maturation, Energy Fuels, 34, 15217, 10.1021/acs.energyfuels.0c02376 Diessel, 1978, Coalification and graphitization in high-pressure schists in New Caledonia, Contrib. Mineral. Petrol., 68, 63, 10.1007/BF00375447 Ferralis, 2016, Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy, Carbon, 108, 440, 10.1016/j.carbon.2016.07.039 Fleurance, 2013, Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the late cretaceous–early tertiary Belqa group, central Jordan, Palaeogeogr. Palaeoclimatol. Palaeoecol., 369, 201, 10.1016/j.palaeo.2012.10.020 Gentzis, 1990, A review of the use of bitumen reflectance in hydrocarbon exploration with examples from Melville Island, Arctic Canada, 23 Goodarzi, 1985, Reflected light microscopy of chitinozoan fragments, Mar. Petrol. Geol., 2, 72, 10.1016/0264-8172(85)90050-9 Goodarzi, 1985, Dispersion of optical properties of graptolite epiderms with increased maturity in early Paleozoic organic sediments, Fuel, 64, 1735, 10.1016/0016-2361(85)90401-6 Hackley, 2015, Standardization of reflectance measurements in dispersed organic matter: results of an exercise to improve interlaboratory agreement, Mar. Petrol. Geol., 59, 22, 10.1016/j.marpetgeo.2014.07.015 Hakimi, 2016, Organic geochemical and petrographic characteristics of the oil shales in the Lajjun area, Central Jordan: origin of organic matter input and preservation conditions, Fuel, 181, 34, 10.1016/j.fuel.2016.04.070 Hakimi, 2018, Pyrolysis analyses and bulk kinetic models of the Late Cretaceous oil shales in Jordan and their implications for early mature sulphur-rich oil generation potential, Mar. Petrol. Geol., 91, 764, 10.1016/j.marpetgeo.2018.01.036 Hamarneh, 1998 Henry, 2019, A rapid method for determining organic matter maturity using Raman spectroscopy: application to Carboniferous organic-rich mudstones and coals, Int. J. Coal Geol., 203, 87, 10.1016/j.coal.2019.01.003 Henry, 2019, Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology, Earth Sci. Rev., 198, 102936, 10.1016/j.earscirev.2019.102936 Jaber, 2000, Gasification potential of Ellujjun oil shale, Energy Convers. Manag., 41, 1615, 10.1016/S0196-8904(00)00006-6 Jaber, 2011, Experimental investigation of effects of oil shale composition on its calorific value and oil yield, Int. J. Oil Gas Coal Technol., 4, 307, 10.1504/IJOGCT.2011.043714 Jaber, 1997, Exploitation of Jordanian oil-shales, Appl. Energy, 58, 161, 10.1016/S0306-2619(97)00041-X Jacob, 1989, Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”), Int. J. Coal Geol., 11, 65, 10.1016/0166-5162(89)90113-4 Jarvie, 2001, Oil and shale gas from barnett shale, ft. Worth basin, Texas Kelemen, 2001, Maturity trends in Raman spectra from kerogen and coal, Energy Fuels, 15, 653, 10.1021/ef0002039 Khatibi, 2018, Evaluating molecular evolution of kerogen by Raman spectroscopy: correlation with optical microscopy and Rock-Eval pyrolysis, Energies, 11, 1406, 10.3390/en11061406 Khrewesh, 2014, Late cretaceous muwaqqar formation ammonites in southeastern Jordan, Jordan J. Earth Environ. Sci., 6, 77 Lafargue, 1998, Rock-Eval 6 Applications in hydrocarbon exploration, production, and soil contamination studies, Oil Gas Sci. Technol. - Rev. L’inst. Fran. Petrol., 53, 421 Landis, 1995, Maturation and bulk chemical properties of a suite of solid hydrocarbons, Org. Geochem., 22, 137, 10.1016/0146-6380(95)90013-6 Li, 2019, Reservoir characteristics and resource potential of oil shale in Sultani area, central of Jordan Liu, 2013, Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications, Chin. Sci. Bull., 58, 1285, 10.1007/s11434-012-5535-y Liu, 2016, Genome-inspired molecular identification in organic matter via Raman spectroscopy, Carbon, 101, 361, 10.1016/j.carbon.2016.02.017 Lünsdorf, 2016, Raman spectroscopy of dispersed vitrinite – methodical aspects and correlation with reflectance, Int. J. Coal Geol., 153, 75, 10.1016/j.coal.2015.11.010 Mählmann, 2016, Vitrinite and vitrinite like solid bitumen reflectance in thermal maturity studies: correlations from diagenesis to incipient metamorphism in different geodynamic settings, Int. J. Coal Geol., 157, 52, 10.1016/j.coal.2015.12.008 Marshall, 2012, Raman spectroscopic investigations of Burgess shale-type preservation: a new way forward, Palaios, 27, 288, 10.2110/palo.2011.p11-041r Marshall, 2010, Understanding the application of Raman spectroscopy to the detection of traces of life, Astrobiology, 10, 229, 10.1089/ast.2009.0344 Mastalerz, 2018, Origin, properties, and implications of solid bitumen in source-rock reservoirs: a review, Int. J. Coal Geol., 195, 14, 10.1016/j.coal.2018.05.013 Ortiz, 2019, Raman spectroscopy based maturity profiling of the Vaca Muerta Formation, neuquén basin, Argentina Passey, 1990, A practical model for organic richness from porosity and resistivity logs, AAPG Bull., 74, 1777 Pasteris, 1991, Raman spectra of graphite as indicators of degree of metamorphism, Can. Mineral., 29, 1 Peters, 1986, Guidelines for evaluating petroleum source rock using programmed pyrolysis, AAPG (Am. Assoc. Pet. Geol.) Bull., 70, 318 Petersen, 2013, Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: correlation to vitrinite reflectance, Int. J. Coal Geol., 114, 1, 10.1016/j.coal.2013.03.013 Pickel, 2017, Classification of liptinite – ICCP system 1994, Int. J. Coal Geol., 169, 40, 10.1016/j.coal.2016.11.004 Powell, 2012, Early diagenesis of Late Cretaceous chalk-chert-phosphorite hardgrounds in Jordan: implications for sedimentation on a Coniacian–Campanian pelagic ramp, GeoArabia, 17, 17, 10.2113/geoarabia170417 Rantitsch, 1995, Coalification and graphitization of graptolites in the anchizone and lower epizone, Int. J. Coal Geol., 27, 1, 10.1016/0166-5162(94)00017-T Sauerer, 2017, Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation, Int. J. Coal Geol., 173, 150, 10.1016/j.coal.2017.02.008 Schito, 2017, Diagenetic thermal evolution of organic matter by Raman spectroscopy, Org. Geochem., 106, 57, 10.1016/j.orggeochem.2016.12.006 Schmidt Mumm, 2016, Microscale organic maturity determination of graptolites using Raman spectroscopy, Int. J. Coal Geol., 162, 96, 10.1016/j.coal.2016.05.002 Schoenherr, 2007, Polyphase thermal evolution in the infra-Cambrian Ara Group (South Oman Salt Basin) as deducted by maturity of solid reservoir bitumen, Org. Geochem., 38, 1293, 10.1016/j.orggeochem.2007.03.010 Spötl, 1998, Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: a combined petrographic and Raman spectrometric study, Org. Geochem., 28, 535, 10.1016/S0146-6380(98)00021-7 Tuinstra, 1970, Raman spectrum of graphite, J. Chem. Phys., 53, 1126, 10.1063/1.1674108 Xiao, 2020, Significance of the characteristics of the micro-laser Raman spectrum of the mineral-organic complex (MOA) in the over-mature marine shale as a maturity index, Sci. Sinica Terrae, 50, 1228 Yui, 1996, Raman spectrum of carbonaceous material: a possible metamorphic grade indicator for low-grade metamorphic rocks, J. Metamorph. Geol., 14, 115, 10.1046/j.1525-1314.1996.05792.x