Molecular dynamics simulations and modelling of the residue interaction networks in the BRAF kinase complexes with small molecule inhibitors: probing the allosteric effects of ligand-induced kinase dimerization and paradoxical activation

Royal Society of Chemistry (RSC) - Tập 12 Số 10 - Trang 3146-3165
Gennady M. Verkhivker1,2,3,4,5
1Chapman University School of Pharmacy, Irvine, CA 92618, USA
2Department of Computational Sciences
3Graduate Program in Computational and Data Sciences, Department of Computational Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
4Orange
5Schmid College of Science and Technology

Tóm tắt

The computational analysis of residue interaction networks dissects the allosteric effects of inhibitor-induced BRAF kinase dimerization and paradoxical activation.

Từ khóa


Tài liệu tham khảo

Manning, 2002, Science, 298, 1912, 10.1126/science.1075762

Manning, 2002, Trends Biochem. Sci., 27, 514, 10.1016/S0968-0004(02)02179-5

Hunter, 2009, Curr. Opin. Cell Biol., 21, 140, 10.1016/j.ceb.2009.01.028

Brognard, 2011, Curr. Opin. Genet. Dev., 21, 4, 10.1016/j.gde.2010.10.012

Huse, 2002, Cell, 109, 275, 10.1016/S0092-8674(02)00741-9

Nolen, 2004, Mol. Cell, 15, 661, 10.1016/j.molcel.2004.08.024

Taylor, 2011, Trends Biochem. Sci., 36, 65, 10.1016/j.tibs.2010.09.006

Endicott, 2012, Annu. Rev. Biochem., 81, 587, 10.1146/annurev-biochem-052410-090317

Taylor, 2012, Philos. Trans. R. Soc. London, Ser. B, 367, 2517, 10.1098/rstb.2012.0054

Taylor, 2012, Nat. Rev. Mol. Cell Biol., 13, 646, 10.1038/nrm3432

Artim, 2012, Biochem. J., 448, 213, 10.1042/BJ20121365

Oruganty, 2012, Philos. Trans. R. Soc. London, Ser. B, 367, 2529, 10.1098/rstb.2012.0015

Taylor, 2013, Biochim. Biophys. Acta, 1834, 1271, 10.1016/j.bbapap.2013.03.007

Meharena, 2013, PLoS Biol., 11, e1001680, 10.1371/journal.pbio.1001680

Kornev, 2008, Proc. Natl. Acad. Sci. U. S. A., 105, 14377, 10.1073/pnas.0807988105

Ten Eyck, 2008, Biochim. Biophys. Acta, 1784, 238, 10.1016/j.bbapap.2007.11.002

Lemmon, 2009, Exp. Cell Res., 315, 638, 10.1016/j.yexcr.2008.10.024

Bose, 2009, Exp. Cell Res., 315, 649, 10.1016/j.yexcr.2008.07.031

Lemmon, 2010, Cell, 141, 1117, 10.1016/j.cell.2010.06.011

Bae, 2010, Mol. Cells, 29, 443, 10.1007/s10059-010-0080-5

Endres, 2011, Curr. Opin. Struct. Biol., 21, 777, 10.1016/j.sbi.2011.07.007

Jura, 2011, Mol. Cell, 42, 9, 10.1016/j.molcel.2011.03.004

Ferguson, 2008, Annu. Rev. Biophys., 37, 353, 10.1146/annurev.biophys.37.032807.125829

Roskoski, Jr., 2014, Pharmacol. Res., 79, 34, 10.1016/j.phrs.2013.11.002

Roskoski, Jr., 2014, Pharmacol. Res., 87, 42, 10.1016/j.phrs.2014.06.001

Endres, 2014, Trends Biochem. Sci., 39, 437, 10.1016/j.tibs.2014.08.001

Kovacs, 2015, Annu. Rev. Biochem., 84, 739, 10.1146/annurev-biochem-060614-034402

Rajakulendran, 2009, Nature, 461, 542, 10.1038/nature08314

Roskoski, Jr., 2010, Biochem. Biophys. Res. Commun., 399, 313, 10.1016/j.bbrc.2010.07.092

Lavoie, 2014, Trends Biochem. Sci., 39, 475, 10.1016/j.tibs.2014.08.004

Jambrina, 2014, Biochem. Soc. Trans., 42, 784, 10.1042/BST20140025

Kornev, 2015, Trends Biochem. Sci., 40, 628, 10.1016/j.tibs.2015.09.002

Shaw, 2014, Mol. Cell. Biol., 34, 1538, 10.1128/MCB.00057-14

Hu, 2013, Cell, 154, 1036, 10.1016/j.cell.2013.07.046

Thevakumaran, 2015, Nat. Struct. Mol. Biol., 22, 37, 10.1038/nsmb.2924

Udell, 2011, Cell. Mol. Life Sci., 68, 553, 10.1007/s00018-010-0520-6

Lavoie, 2015, Nat. Rev. Mol. Cell Biol., 16, 281, 10.1038/nrm3979

Palmieri, 2013, Drug Discovery Today, 18, 407, 10.1016/j.drudis.2012.11.009

Lavoie, 2013, Nat. Chem. Biol., 9, 428, 10.1038/nchembio.1257

Poulikakos, 2010, Nature, 464, 427, 10.1038/nature08902

Hatzivassiliou, 2010, Nature, 464, 431, 10.1038/nature08833

Heidorn, 2010, Cell, 140, 209, 10.1016/j.cell.2009.12.040

Holderfield, 2014, Br. J. Cancer, 111, 640, 10.1038/bjc.2014.139

Zhang, 2009, Nat. Rev. Cancer, 9, 28, 10.1038/nrc2559

Dar, 2011, Annu. Rev. Biochem., 80, 769, 10.1146/annurev-biochem-090308-173656

Cowan-Jacob, 2014, Future Med. Chem., 6, 541, 10.4155/fmc.13.216

Fabbro, 2015, Mol. Pharmacol., 87, 766, 10.1124/mol.114.095489

Wu, 2015, Trends Pharmacol. Sci., 36, 422, 10.1016/j.tips.2015.04.005

Wu, 2015, Pharmacol. Ther., 156, 59, 10.1016/j.pharmthera.2015.10.002

Roskoski, Jr., 2015, Pharmacol. Res., 100, 1, 10.1016/j.phrs.2015.07.010

Roskoski, Jr., 2016, Pharmacol. Res., 103, 26, 10.1016/j.phrs.2015.10.021

King, 2006, Cancer Res., 66, 11100, 10.1158/0008-5472.CAN-06-2554

Xie, 2009, Biochemistry, 48, 5187, 10.1021/bi802067u

Hansen, 2008, Bioorg. Med. Chem. Lett., 18, 4692, 10.1016/j.bmcl.2008.07.002

Newhouse, 2011, Bioorg. Med. Chem. Lett., 21, 3488, 10.1016/j.bmcl.2010.12.038

Ren, 2011, Bioorg. Med. Chem. Lett., 21, 1243, 10.1016/j.bmcl.2010.12.061

Qin, 2012, J. Med. Chem., 55, 5220, 10.1021/jm3004416

Vasbinder, 2013, J. Med. Chem., 56, 1996, 10.1021/jm301658d

Haling, 2014, Cancer Cell, 26, 402, 10.1016/j.ccr.2014.07.007

Wan, 2004, Cell, 116, 855, 10.1016/S0092-8674(04)00215-6

Peng, 2015, Cancer Cell, 28, 384, 10.1016/j.ccell.2015.08.002

Tsai, 2008, Proc. Natl. Acad. Sci. U. S. A., 105, 3041, 10.1073/pnas.0711741105

Bollag, 2010, Nature, 467, 596, 10.1038/nature09454

Zhang, 2015, Nature, 526, 583, 10.1038/nature14982

Arora, 2015, J. Med. Chem., 58, 1818, 10.1021/jm501667n

Bahar, 2010, Annu. Rev. Biophys., 39, 23, 10.1146/annurev.biophys.093008.131258

Haliloglu, 1997, Phys. Rev. Lett., 79, 3090, 10.1103/PhysRevLett.79.3090

Yang, 2006, Nucleic Acids Res., 34, W24, 10.1093/nar/gkl084

Eyal, 2006, Bioinformatics, 22, 2619, 10.1093/bioinformatics/btl448

Ma, 2005, Structure, 13, 373, 10.1016/j.str.2005.02.002

Bahar, 2005, Curr. Opin. Struct. Biol., 15, 586, 10.1016/j.sbi.2005.08.007

Keskin, 2000, Biophys. J., 78, 2093, 10.1016/S0006-3495(00)76756-7

Rueda, 2007, Structure, 15, 565, 10.1016/j.str.2007.03.013

Fuglebakk, 2012, Bioinformatics, 28, 2431, 10.1093/bioinformatics/bts445

Tse, 2015, Mol. BioSyst., 11, 2082, 10.1039/C5MB00246J

Tse, 2015, PLoS One, 10, e0130203, 10.1371/journal.pone.0130203

Marti-Renom, 2000, Annu. Rev. Biophys. Biomol. Struct., 29, 291, 10.1146/annurev.biophys.29.1.291

Fiser, 2000, Protein Sci., 9, 1753, 10.1110/ps.9.9.1753

Fernandez-Fuentes, 2006, Nucleic Acids Res., 34, W173, 10.1093/nar/gkl113

Hooft, 1996, Proteins, 26, 363, 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D

Hekkelman, 2010, Nucleic Acids Res., 38, W719, 10.1093/nar/gkq453

Anandakrishnan, 2012, Nucleic Acids Res., 40, W537, 10.1093/nar/gks375

Jorgensen, 1983, J. Chem. Phys., 79, 926, 10.1063/1.445869

Humphrey, 1996, J. Mol. Graphics, 14, 33, 10.1016/0263-7855(96)00018-5

Bayly, 1993, J. Phys. Chem., 97, 10269, 10.1021/j100142a004

Singh, 1984, J. Comput. Chem., 5, 129, 10.1002/jcc.540050204

Besler, 1990, J. Comput. Chem., 11, 431, 10.1002/jcc.540110404

Vanommeslaeghe, 2010, J. Comput. Chem., 31, 671

Vanommeslaeghe, 2012, J. Chem. Inf. Model., 52, 3144, 10.1021/ci300363c

Vanommeslaeghe, 2012, J. Chem. Inf. Model., 52, 3155, 10.1021/ci3003649

Phillips, 2005, J. Comput. Chem., 26, 1781, 10.1002/jcc.20289

MacKerell, 1998, J. Phys. Chem. B, 102, 3586, 10.1021/jp973084f

MacKerell, Jr., 2000, Biopolymers, 56, 257, 10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W

Martyna, 1994, J. Chem. Phys., 101, 4177, 10.1063/1.467468

Darden, 1997, J. Chim. Phys. Phys.-Chim. Biol., 94, 1346, 10.1051/jcp/1997941346

Koukos, 2013, J. Comput. Chem., 34, 2310, 10.1002/jcc.23381

Wang, 2004, J. Comput. Chem., 25, 1157, 10.1002/jcc.20035

Srinivasan, 1998, J. Am. Chem. Soc., 120, 9401, 10.1021/ja981844+

Kollman, 2000, Acc. Chem. Res., 33, 889, 10.1021/ar000033j

Andricioaei, 2001, J. Chem. Phys., 115, 6289, 10.1063/1.1401821

Massova, 1999, J. Am. Chem. Soc., 121, 8133, 10.1021/ja990935j

Huo, 2002, J. Comput. Chem., 23, 15, 10.1002/jcc.1153

Vendruscolo, 2002, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 65, 061910, 10.1103/PhysRevE.65.061910

Dokholyan, 2002, Proc. Natl. Acad. Sci. U. S. A., 99, 8637, 10.1073/pnas.122076099

Greene, 2003, J. Mol. Biol., 334, 781, 10.1016/j.jmb.2003.08.061

Atilgan, 2004, Biophys. J., 86, 85, 10.1016/S0006-3495(04)74086-2

del Sol, 2005, Proteins, 58, 672, 10.1002/prot.20348

del Sol, 2005, Bioinformatics, 21, 1311, 10.1093/bioinformatics/bti167

Amitai, 2004, J. Mol. Biol., 344, 1135, 10.1016/j.jmb.2004.10.055

Hu, 2007, PLoS Comput. Biol., 3, e117, 10.1371/journal.pcbi.0030117

del Sol, 2006, Protein Sci., 15, 2120, 10.1110/ps.062249106

del Sol, 2006, Mol. Syst. Biol., 2, 2006.0019, 10.1038/msb4100063

Brinda, 2005, Biophys. J., 89, 4159, 10.1529/biophysj.105.064485

Vijayabaskar, 2010, Biophys. J., 99, 3704, 10.1016/j.bpj.2010.08.079

Ghosh, 2007, Proc. Natl. Acad. Sci. U. S. A., 104, 15711, 10.1073/pnas.0704459104

Ghosh, 2008, Biochemistry, 47, 11398, 10.1021/bi8007559

Bhattacharyya, 2010, BMC Struct. Biol., 10, 27, 10.1186/1472-6807-10-27

Bhattacharyya, 2011, Biochemistry, 50, 6225, 10.1021/bi200306u

Ghosh, 2011, J. Biol. Chem., 286, 37721, 10.1074/jbc.M111.246702

Sethi, 2009, Proc. Natl. Acad. Sci. U. S. A., 106, 6620, 10.1073/pnas.0810961106

Floyd, 1962, Commun. ACM, 5, 345, 10.1145/367766.368168

Newman, 2002, Phys. Rev. Lett., 89, 208701, 10.1103/PhysRevLett.89.208701

Maslov, 2002, Science, 296, 910, 10.1126/science.1065103

Bagler, 2007, Bioinformatics, 23, 1760, 10.1093/bioinformatics/btm257

Hao, 2011, PLoS One, 6, e28322, 10.1371/journal.pone.0028322

Shannon, 2003, Genome Res., 13, 2498, 10.1101/gr.1239303

Assenov, 2008, Bioinformatics, 24, 282, 10.1093/bioinformatics/btm554

Adamcsek, 2006, Bioinformatics, 22, 1021, 10.1093/bioinformatics/btl039

Agarwal, 2010, PLoS Comput. Biol., 6, e1000817, 10.1371/journal.pcbi.1000817

Tan, 2013, Nucleic Acids Res., 41, W314, 10.1093/nar/gkt503

Foster, 2016, Cancer Cell, 29, 477, 10.1016/j.ccell.2016.02.010

Poulikakos, 2011, Nature, 480, 387, 10.1038/nature10662