Mechanical, physical, thermal and morphological properties of polypropylene composite materials developed with particles of peach and cherry stones
Tài liệu tham khảo
Allamand Puratic
Parodi, 2018, 5, 1
Oficina de Estudios y Políticas Agrarias (ODEPA), 2016
Molina, 2016, 110
Oficina de Estudios y Políticas Agrarias (ODEPA), 2015
Oficina de Estudios y Políticas Agrarias (ODEPA), 2014
Gálvez, 2014
Centro de Estudios de Alimentos Procesado (CEAP)
Drzal, 2001
Asim, 2015, A review on pineapple leaves fibre and its composites, Int. J. Polym. Sci., 2015, 1, 10.1155/2015/950567
Flandez, 2012, Management of corn stalk waste as reinforcement for polypropylene injection moulded composites, BioResources, 7, 1836, 10.15376/biores.7.2.1836-1849
Koutsomitopoulou, 2014, Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites, Powder Technol., 255, 10, 10.1016/j.powtec.2013.10.047
Naghmouchi, 2015, Olive stones flour as reinforcement in polypropylene composites: a step forward in the valorization of the solid waste from the olive oil industry, Ind. Crop. Prod., 72, 183, 10.1016/j.indcrop.2014.11.051
Naghmouchi, 2015, Polypropylene composites based on lignocellulosic fillers: how the filler morphology affects the composite properties, Mater. Design, 65, 454, 10.1016/j.matdes.2014.09.047
Najafi, 2001, Lignocellulosic filler/ recycled HDPE composites: effect of filler type on physical and flexural properties, BioResources, 6, 2411, 10.15376/biores.6.3.2411-2424
Reisa, 2015, Particles of coffee wastes as reinforcement in polyhydroxybutyrate (PHB) based composites, Mater. Res., 18, 546, 10.1590/1516-1439.318114
Getu, 2014, Green composite material from agricultural waste, Int. J. Agric. Res. Rev., 2, 056
Prithivirajan, 2015, Bio-based composites from waste agricultural residues: mechanical and morphological properties, Cellulose Chem. Technol., 49, 65
Wechsler, 2013
Khanjanzadeh, 2014, Influence of walnut shell as filler on mechanical and physical properties of MDF improved by nano-SiO2, J. Ind. Acad. Wood Sci., 11, 15, 10.1007/s13196-014-0111-5
Wechsler, 2019, Some properties of composite panels manufactured from peach (Prunus persica) stones and polypropylene, Compos. Part B, 175, 107152, 10.1016/j.compositesb.2019.107152
Çöpur, 2007, Some chemical properties of hazelnut husk and its suitability for particleboard production, Build. Environ., 42, 2568, 10.1016/j.buildenv.2006.07.011
TAPPI, 1974
TAPPI, 1988
TAPPI, 2002
TAPPI, 1978
ASTM, 1996
Nemli, 2007, Evaluation of the physical and mechanical properties of particleboard made from the needle litter of Pinus pinaster, Ind. Crop. Prod., 26, 252, 10.1016/j.indcrop.2007.03.016
Shebani, 2009, The effect of wood extractives on the thermal stability of different wood-LDPE composites, Thermochim. Acta, 481, 52, 10.1016/j.tca.2008.10.008
Horvath, 2006, Solubility of structurally complicated materials: I. Wood, J. Phys. Chem. Ref. Data, 35, 77, 10.1063/1.2035708
Pettersen, 1984, The chemical composition of wood, 57
Shu, 2008
Tufan, 2015, Mechanical, thermal, morphological properties and decay resistance of filled hazelnut husk polymer composites, Maderas, 17, 865
Xu, 2006, Characterization of degraded organosolv hemicelluloses from wheat straw, Polym. Degrad. Stab., 91, 1880, 10.1016/j.polymdegradstab.2005.11.002
Canetti, 2006, Thermal degradation behavior of isotactic polypropylene blended with lignin, Polym. Degrad. Stab., 91, 494, 10.1016/j.polymdegradstab.2005.01.052
Sanadi, 1994, Reinforcing polypropylene with natural fibers, Plastic. Eng., 27
Kazayawoko, 1999, Surface modification and adhesion mechanisms in wood fiber-polypropylene composites, J. Mater. Sci., 34, 6189, 10.1023/A:1004790409158
Chaharmahali, 2008, Polymer. Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard, Polym. Compos., 29, 606, 10.1002/pc.20434
Kiaei, 2014, Influence of residual lignin content on physical and mechanical properties of kraft pulp / pp composites, Maderas, 16, 495
Kim, 2006, Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content, Thermochim. Acta, 451, 181, 10.1016/j.tca.2006.09.013
Maya, 2008, Biofibres and biocomposites, Carbohydr. Polym., 71, 343, 10.1016/j.carbpol.2007.05.040
Yang, 2006, In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin, Energy Fuel, 20, 388, 10.1021/ef0580117
Rosa, 2009, Thermal and dynamic-mechanical characterization of rice-husk filled polypropylene composites, Macromol. Res., 17, 8, 10.1007/BF03218594
Ornaghi, 2010, Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding, J. Appl. Polym. Sci., 118, 887, 10.1002/app.32388
Gauthier, 2004, Interfaces in polyolefin/cellulosic fiber composites: chemical coupling, morphology, correlation with adhesion and aging in moisture, Polym. Compos., 19, 287, 10.1002/pc.10102
Beg, 2005, Fiber pretreatment and its effects in wood fiber reinforced polypropylene composites, Mater. Manuf. Process., 21, 303, 10.1080/10426910500464750
Stark, 2001, Influence of moisture absorption on mechanical properties of wood flour- polypropylene composites, J. Thermoplas. Compos. Mater., 14, 421, 10.1106/UDKY-0403-626E-1H4P
Cui, 2008, Fabrication and interfacial modification of wood/recycled plastic composite materials, Compos. Part A, 39, 655, 10.1016/j.compositesa.2007.10.017
Lu, 2005, Maleated wood-fiber/high-density-polyethylene composites: coupling mechanisms and interfacial characterization, Compos. Interfaces, 12, 125, 10.1163/1568554053542133
Shibata, 2002, Biodegradable polyester composites reinforced with short abaca fiber, J. Appl. Polym. Sci., 85, 129, 10.1002/app.10665
Mürşit, 2015, Mechanical, thermal, morphological properties and decay resistance of filled hazelnut husk polymer composites, Maderas, 17, 865
Xu, 2014, Enhanced thermal and mechanical properties of lignin/polypropylene wood-plastic composite by using flexible segment-containing reactive compatibilizer, Macromol. Res., 22, 1084, 10.1007/s13233-014-2161-3